Claudia Manzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/175696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	4.9	1,414
3	Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 2018, 19, 286-302.	3.2	498
4	Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2295-2300.	3.3	435
5	A Recessive Mutation in the APP Gene with Dominant-Negative Effect on Amyloidogenesis. Science, 2009, 323, 1473-1477.	6.0	357
6	The SIRT1 activator resveratrol protects SKâ€Nâ€BE cells from oxidative stress and against toxicity caused by αâ€synuclein or amyloidâ€Î² (1â€42) peptide. Journal of Neurochemistry, 2009, 110, 1445-1456.	2.1	241
7	Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain, 2016, 139, 1904-1918.	3.7	170
8	Cellular processes associated with <scp>LRRK</scp> 2 function and dysfunction. FEBS Journal, 2015, 282, 2806-2826.	2.2	144
9	Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2900-2910.	1.9	124
10	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	4.5	95
11	Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochemical and Biophysical Research Communications, 2013, 441, 862-866.	1.0	79
12	mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1. Scientific Reports, 2016, 6, 35106.	1.6	69
13	LRRK2 and Human Disease: A Complicated Question or a Question of Complexes?. Science Signaling, 2012, 5, pe2.	1.6	64
14	Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies. FASEB Journal, 2013, 27, 3424-3429.	0.2	61
15	The LRRK2–macroautophagy axis and its relevance to Parkinson's disease. Biochemical Society Transactions, 2017, 45, 155-162.	1.6	58
16	Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues. Neurobiology of Aging, 2019, 78, 98-110.	1.5	57
17	Conformational Plasticity of the Gerstmann–Strässler–Scheinker Disease Peptide as Indicated by Its Multiple Aggregation Pathways. Journal of Molecular Biology, 2008, 381, 1349-1361.	2.0	56
18	LRRK2 and Autophagy. Advances in Neurobiology, 2017, 14, 89-105.	1.3	54

Claudia Manzoni

#	Article	IF	CITATIONS
19	Tetracycline prevents AÎ ² oligomer toxicity through an atypical supramolecular interaction. Organic and Biomolecular Chemistry, 2011, 9, 463-472.	1.5	52
20	Computational analysis of the LRRK2 interactome. PeerJ, 2015, 3, e778.	0.9	48
21	Divergent α-synuclein solubility and aggregation properties in G2019S LRRK2 Parkinson's disease brains with Lewy Body pathology compared to idiopathic cases. Neurobiology of Disease, 2013, 58, 183-190.	2.1	44
22	The Molecular Assembly of Amyloid AÎ ² Controls Its Neurotoxicity and Binding to Cellular Proteins. PLoS ONE, 2011, 6, e24909.	1.1	39
23	Weighted Protein Interaction Network Analysis of Frontotemporal Dementia. Journal of Proteome Research, 2017, 16, 999-1013.	1.8	39
24	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	3.7	39
25	Overcoming synthetic AÎ ² peptide aging: a new approach to an age-old problem. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2009, 16, 71-80.	1.4	36
26	Neurotoxic and Gliotrophic Activity of a Synthetic Peptide Homologous to Gerstmann-Straussler-Scheinker Disease Amyloid Protein. Journal of Neuroscience, 2007, 27, 1576-1583.	1.7	35
27	Stratification of candidate genes for Parkinson's disease using weighted protein-protein interaction network analysis. BMC Genomics, 2018, 19, 452.	1.2	35
28	Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins. Proteomics, 2018, 18, e1700444.	1.3	34
29	Gerstmann-Strässler-Scheinker Disease Amyloid Protein Polymerizes According to the "Dock-and-Lock―Model. Journal of Biological Chemistry, 2006, 281, 843-849.	1.6	33
30	Rare variants in LRRK1 and Parkinson's disease. Neurogenetics, 2014, 15, 49-57.	0.7	33
31	The LRRK2 signalling system. Cell and Tissue Research, 2018, 373, 39-50.	1.5	31
32	Advances in protein-protein interaction network analysis for Parkinson's disease. Neurobiology of Disease, 2021, 155, 105395.	2.1	31
33	Tau Mutations Serve as a Novel Risk Factor for Cancer. Cancer Research, 2018, 78, 3731-3739.	0.4	30
34	Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo. Molecular Neurodegeneration, 2021, 16, 17.	4.4	29
35	MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature, 2021, 594, 117-123.	13.7	29
36	Pathogenic LRRK2 Mutations Do Not Alter Gene Expression in Cell Model Systems or Human Brain Tissue. PLoS ONE, 2011, 6, e22489.	1.1	27

Claudia Manzoni

#	Article	IF	CITATIONS
37	Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology. Brain Research, 2018, 1701, 75-84.	1.1	25
38	LRRK2 and autophagy: a common pathway for disease. Biochemical Society Transactions, 2012, 40, 1147-1151.	1.6	22
39	Leucineâ€rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. Journal of Neurochemistry, 2020, 152, 273-283.	2.1	21
40	PINOT: an intuitive resource for integrating protein-protein interactions. Cell Communication and Signaling, 2020, 18, 92.	2.7	21
41	mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Bioscience Reports, 2018, 38, .	1.1	16
42	Network Analysis for Complex Neurodegenerative Diseases. Current Genetic Medicine Reports, 2020, 8, 17-25.	1.9	14
43	GTP binding controls complex formation by the human ROCO protein MASL 1. FEBS Journal, 2014, 281, 261-274.	2.2	13
44	GTP binding and intramolecular regulation by the ROC domain of Death Associated Protein Kinase 1. Scientific Reports, 2012, 2, 695.	1.6	12
45	Protein network analysis reveals selectively vulnerable regions and biological processes in FTD. Neurology: Genetics, 2018, 4, e266.	0.9	12
46	Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia. Scientific Reports, 2019, 9, 10854.	1.6	9
47	LRRK2: A Problem Lurking in Vesicle Trafficking?. Journal of Neuroscience, 2011, 31, 9787-9788.	1.7	8
48	Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias. IScience, 2021, 24, 102484.	1.9	8
49	An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of α-synuclein. Cell Reports, 2021, 35, 109189.	2.9	8
50	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.5	7
51	<i>SLITRK2</i> , an X-linked modifier of the age at onset in <i>C9orf72</i> frontotemporal lobar degeneration. Brain, 2021, 144, 2798-2811.	3.7	7
52	The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Research, 2022, 1778, 147781.	1.1	7
53	Measuring Lactase Enzymatic Activity in the Teaching Lab. Journal of Visualized Experiments, 2018, , .	0.2	6
54	Protein interaction network analysis reveals genetic enrichment of immune system genes in frontotemporal dementia. Neurobiology of Aging, 2022, 116, 67-79.	1.5	2

#	Article	IF	CITATIONS
55	[O2–03–02]: PROTEIN NETWORK ANALYSIS TO PRIORITIZE CANDIDATE GENES AND PATHWAYS FOR SPORADIC DISEASE: A COMPARISON BETWEEN FRONTOTEMPORAL DEMENTIA AND PARKINSON's DISEASE. Alzheimer's and Dementia, 2017, 13, P555.	0.4	1
56	Mendelian and Sporadic FTD: Disease Risk and Avenues from Genetics to Disease Pathways Through In Silico Modelling. Advances in Experimental Medicine and Biology, 2021, 1281, 283-296.	0.8	1
57	Genetic Risk Factors for Sporadic Frontotemporal Dementia. , 2018, , 147-186.		1
58	Seventy-Two-Hour LRRK2 Kinase Activity Inhibition Increases Lysosomal GBA Expression in H4, a Human Neuroglioma Cell Line. International Journal of Molecular Sciences, 2022, 23, 6935.	1.8	1
59	Exploration of the endoâ€lysosomal pathway genes in frontotemporal dementia: The use of proteinâ€protein interaction networks to prioritize rareâ€variant association analysis results. Alzheimer's and Dementia, 2020, 16, e043624.	0.4	0