Zhigang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1756670/publications.pdf

Version: 2024-02-01

623734 454955 31 933 14 30 citations g-index h-index papers 32 32 32 1181 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An optimized molecular potential for carbon dioxide. Journal of Chemical Physics, 2005, 122, 214507.	3.0	188
2	Equation of state of the H2O, CO2, and H2O–CO2 systems up to 10 GPa and 2573.15K: Molecular dynamics simulations with ab initio potential surface. Geochimica Et Cosmochimica Acta, 2006, 70, 2311-2324.	3.9	157
3	Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation. Physics of the Earth and Planetary Interiors, 2005, 149, 335-354.	1.9	101
4	Relief history and denudation evolution of the northern Tibet margin: Constraints from 40Ar/39Ar and (U–Th)/He dating and implications for far-field effect of rising plateau. Tectonophysics, 2016, 675, 196-208.	2.2	60
5	Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep Earth. Earth and Planetary Science Letters, 2013, 379, 1-12.	4.4	55
6	Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study. Chemical Physics, 2004, 297, 221-233.	1.9	50
7	Stability and Reactions of CaCO ₃ Polymorphs in the Earth's Deep Mantle. Journal of Geophysical Research: Solid Earth, 2018, 123, 6491-6500.	3.4	32
8	New Highâ€Pressure Phase of CaCO ₃ at the Topmost Lower Mantle: Implication for the Deepâ€Mantle Carbon Transportation. Geophysical Research Letters, 2018, 45, 1355-1360.	4.0	30
9	The structure, dynamics and solvation mechanisms of ions in water from long time molecular dynamics simulations: a case study of CaCl2(aq) aqueous solutions. Molecular Physics, 2008, 106, 2685-2697.	1.7	26
10	Molecular dynamics simulation of the CH4 and CH4–H2O systems up to 10GPa and 2573K. Geochimica Et Cosmochimica Acta, 2007, 71, 2036-2055.	3.9	25
11	Partitioning of sulfur between solid and liquid iron under Earth's core conditions: Constraints from atomistic simulations with machine learning potentials. Geochimica Et Cosmochimica Acta, 2020, 291, 5-18.	3.9	23
12	An accurate model for calculating C2H6 solubility in pure water and aqueous NaCl solutions. Fluid Phase Equilibria, 2005, 238, 77-86.	2.5	17
13	High pressure equation of state for molten CaCO3 from first principles simulations. Diqiu Huaxue, 2015, 34, 13-20.	0.5	16
14	Some thermodynamic properties of larnite (\hat{l}^2 -Ca ₂ SiO ₄) constrained by high <i>T</i> /ci>Pexperiment and/or theoretical simulation. American Mineralogist, 2016, 101, 277-288.	1.9	16
15	Phase equilibria of the system methane–ethane from temperature scaling Gibbs Ensemble Monte Carlo simulation. Geochimica Et Cosmochimica Acta, 2002, 66, 3431-3439.	3.9	15
16	Modelling of phase equilibria in CH4–C2H6–C3H8–nC4H10–NaCl–H2O systems. Applied Geochemistr 2015, 56, 23-36.	у _{з.о}	14
17	Compressional behavior of MgCr2O4 spinel from first-principles simulation. Science China Earth Sciences, 2016, 59, 989-996.	5.2	14
18	Two-phase thermodynamic model for computing entropies of liquids reanalyzed. Journal of Chemical Physics, 2017, 147, 194505.	3.0	14

#	Article	IF	Citations
19	Solvation properties of Li+and Clâ^in water: molecular dynamics simulation with a non-rigid model. Molecular Physics, 2003, 101, 1501-1510.	1.7	12
20	Magnesium partitioning between silicate melt and liquid iron using first-principles molecular dynamics: Implications for the early thermal history of the Earth's core. Earth and Planetary Science Letters, 2020, 531, 115934.	4.4	10
21	Evaluation of the pressure–volume–temperature (PVT) data of water from experiments and molecular simulations since 1990. Physics of the Earth and Planetary Interiors, 2015, 245, 88-102.	1.9	9
22	Spinel and post-spinel phase assemblages in Zn2TiO4: an experimental and theoretical study. Physics and Chemistry of Minerals, 2017, 44, 109-123.	0.8	9
23	The effect of Si and S on the stability of bcc iron with respect to tetragonal strain at the Earth's inner core conditions. Geophysical Research Letters, 2013, 40, 2958-2962.	4.0	8
24	A new Ca3MgSi2O8 compound and some of its thermodynamic properties. Journal of Solid State Chemistry, 2017, 255, 145-149.	2.9	7
25	Extension of the IAPWS-95 formulation and an improved calculation approach for saturated properties. Physics of the Earth and Planetary Interiors, 2011, 185, 53-60.	1.9	6
26	Equations of state for aqueous solutions under mantle conditions. Science China Earth Sciences, 2016, 59, 1095-1106.	5.2	5
27	Equations of state of Co2TiO4-Sp, Co2TiO4-CM, and Co2TiO4-CT, and their phase transitions: an experimental and theoretical study. Physics and Chemistry of Minerals, 2019, 46, 571-582.	0.8	4
28	Crystal Structure and Some Thermodynamic Properties of Ca7MgSi4O16-Bredigite. Crystals, 2021, 11, 14.	2.2	4
29	Response to "Comment on â€~An optimized potential for carbon dioxide' ―[J. Chem. Phys. 129, 087 (2008)]. Journal of Chemical Physics, 2008, 129, 087102.	101 3.0	3
30	Free energies of Feâ€Oâ€Si ternary liquids at high temperatures and pressures: Implications for the evolution of the Earth's core composition. Geophysical Research Letters, 0, , .	4.0	2
31	Thermoelastic properties of MgSiO3-majorite at high temperatures and pressures: A first principles study. Physics of the Earth and Planetary Interiors, 2020, 303, 106491.	1.9	1