Judyta K Juranek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1756470/publications.pdf

Version: 2024-02-01

623734 526287 35 971 14 27 citations g-index h-index papers 36 36 36 1655 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unlocking the biology of RAGE in diabetic microvascular complications. Trends in Endocrinology and Metabolism, 2014, 25, 15-22.	7.1	164
2	Chemotherapyâ€induced neuropathiesâ€"a growing problem for patients and health care providers. Brain and Behavior, 2017, 7, e00558.	2.2	122
3	RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neuroscience and Biobehavioral Reviews, 2016, 62, 48-55.	6.1	119
4	Risk Factors and Emerging Therapies in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2019, 20, 2616.	4.1	73
5	RAGE Deficiency Improves Postinjury Sciatic Nerve Regeneration in Type 1 Diabetic Mice. Diabetes, 2013, 62, 931-943.	0.6	64
6	Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 2015, 9, 485.	3.7	55
7	Receptor for advanced glycation end-products in neurodegenerative diseases. Reviews in the Neurosciences, 2015, 26, 691-698.	2.9	53
8	The Receptor for Advanced Glycation End Products (RAGE) and DIAPH1: Implications for vascular and neuroinflammatory dysfunction in disorders of the central nervous system. Neurochemistry International, 2019, 126, 154-164.	3.8	44
9	The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. , 2018, 08, .		41
10	Soluble RAGE Treatment Delays Progression of Amyotrophic Lateral Sclerosis in SOD1 Mice. Frontiers in Cellular Neuroscience, 2016, 10, 117.	3.7	34
11	Increased expression of the receptor for advanced glycation endâ€products in human peripheral neuropathies. Brain and Behavior, 2013, 3, 701-709.	2.2	25
12	Differential expression of active zone proteins in neuromuscular junctions suggests functional diversification. European Journal of Neuroscience, 2006, 24, 3043-3052.	2.6	24
13	Morphological Changes and Immunohistochemical Expression of RAGE and its Ligands in the Sciatic Nerve of Hyperglycemic Pig (Sus Scrofa). Biochemistry Insights, 2010, 3, BCI.S5340.	3.3	20
14	CRISPR/Cas9 Technology as an Emerging Tool for Targeting Amyotrophic Lateral Sclerosis (ALS). International Journal of Molecular Sciences, 2018, 19, 906.	4.1	19
15	Impaired slow axonal transport in diabetic peripheral nerve is independent of <scp>RAGE</scp> . European Journal of Neuroscience, 2013, 38, 3159-3168.	2.6	17
16	Deletion of Go2α abolishes cocaineâ€induced behavioral sensitization by disturbing the striatal dopamine system. FASEB Journal, 2008, 22, 3736-3746.	0.5	16
17	Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. Journal of Neuroinflammation, 2021, 18, 139.	7.2	16
18	Immunohistochemical characterization of superior cervical ganglion neurons supplying porcine parotid salivary gland. Neuroscience Letters, 2011, 500, 57-62.	2.1	13

#	Article	IF	CITATIONS
19	Role of RAGE in the Pathogenesis of Neurological Disorders. Neuroscience Bulletin, 2022, 38, 1248-1262.	2.9	11
20	The Involvement of RAGE and Its Ligands during Progression of ALS in SOD1 G93A Transgenic Mice. International Journal of Molecular Sciences, 2022, 23, 2184.	4.1	10
21	Origins and Neurochemical Characteristics of Porcine Intervertebral Disc Sympathetic Innervation: a Preliminary Report. Journal of Molecular Neuroscience, 2017, 63, 50-57.	2.3	9
22	Peripheral Neuropathy Presents Similar Symptoms and Pathological Changes in Both High-Fat Diet and Pharmacologically Induced Pre- and Diabetic Mouse Models. Life, 2021, 11, 1267.	2.4	7
23	Origins and Neurochemical Complexity of Preganglionic Neurons Supplying the Superior Cervical Ganglion in the Domestic Pig. Journal of Molecular Neuroscience, 2015, 55, 297-304.	2.3	6
24	Active zone protein expression changes at the key stages of cerebellar cortex neurogenesis in the rat. Acta Histochemica, 2013, 115, 616-625.	1.8	4
25	Reduced expression of Munc13-1 in human and porcine diabetic peripheral nerve. Acta Histochemica, 2014, 116, 106-111.	1.8	2
26	Coordinated bi-directional trafficking of synaptic vesicle and active zone proteins in peripheral nerves. Biochemical and Biophysical Research Communications, 2021, 559, 92-98.	2.1	1
27	Inferior vagal ganglion galaninergic response to gastric ulcers. PLoS ONE, 2020, 15, e0242746.	2.5	1
28	Drug-induced neuropathies. Family Medicine and Primary Care Review, 2015, 4, 284-288.	0.2	0
29	The role of RAGE in the diabetic neuropathy. Family Medicine and Primary Care Review, 2015, 4, 316-318.	0.2	O
30	Inferior vagal ganglion galaninergic response to gastric ulcers., 2020, 15, e0242746.		0
31	Inferior vagal ganglion galaninergic response to gastric ulcers. , 2020, 15, e0242746.		O
32	Inferior vagal ganglion galaninergic response to gastric ulcers., 2020, 15, e0242746.		0
33	Inferior vagal ganglion galaninergic response to gastric ulcers. , 2020, 15, e0242746.		0
34	Inferior vagal ganglion galaninergic response to gastric ulcers. , 2020, 15, e0242746.		0
35	Inferior vagal ganglion galaninergic response to gastric ulcers. , 2020, 15, e0242746.		0