
Willem J M Mulder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1756343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defining trained immunity and its role in health and disease. Nature Reviews Immunology, 2020, 20, 375-388.	10.6	1,345
2	Smart cancer nanomedicine. Nature Nanotechnology, 2019, 14, 1007-1017.	15.6	776
3	Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease. Molecular Pharmaceutics, 2013, 10, 831-847.	2.3	584
4	Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR in Biomedicine, 2006, 19, 142-164.	1.6	510
5	Quantum Dots with a Paramagnetic Coating as a Bimodal Molecular Imaging Probe. Nano Letters, 2006, 6, 1-6.	4.5	477
6	Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet, The, 2017, 389, 834-845.	6.3	442
7	Atherosclerotic Plaque Composition: Analysis with Multicolor CT and Targeted Gold Nanoparticles. Radiology, 2010, 256, 774-782.	3.6	431
8	Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews Drug Discovery, 2011, 10, 835-852.	21.5	341
9	A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Communications, 2014, 5, 3065.	5.8	336
10	Nanocrystal Core High-Density Lipoproteins: A Multimodality Contrast Agent Platform. Nano Letters, 2008, 8, 3715-3723.	4.5	308
11	Therapeutic targeting of trained immunity. Nature Reviews Drug Discovery, 2019, 18, 553-566.	21.5	287
12	Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 2021, 22, 2-6.	7.0	274
13	Nanotechnology in Medical Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 992-1000.	1.1	251
14	MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB Journal, 2005, 19, 2008-2010.	0.2	247
15	Nanoparticulate Assemblies of Amphiphiles and Diagnostically Active Materials for Multimodality Imaging. Accounts of Chemical Research, 2009, 42, 904-914.	7.6	244
16	MRI Contrast Agents: Current Status and Future Perspectives. Anti-Cancer Agents in Medicinal Chemistry, 2007, 7, 291-305.	0.9	232
17	Improved Biocompatibility and Pharmacokinetics of Silica Nanoparticles by Means of a Lipid Coating: A Multimodality Investigation. Nano Letters, 2008, 8, 2517-2525.	4.5	229
18	A Liposomal System for Contrast-Enhanced Magnetic Resonance Imaging of Molecular Targets. Bioconjugate Chemistry, 2004, 15, 799-806.	1.8	216

#	Article	IF	CITATIONS
19	Mass Production and Size Control of Lipid–Polymer Hybrid Nanoparticles through Controlled Microvortices. Nano Letters, 2012, 12, 3587-3591.	4.5	189
20	Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer. ACS Nano, 2011, 5, 4422-4433.	7.3	183
21	The Effect of Nanoparticle Polyethylene Glycol Surface Density on Ligand-Directed Tumor Targeting Studied <i>in Vivo</i> by Dual Modality Imaging. ACS Nano, 2012, 6, 5648-5658.	7.3	176
22	Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Science Advances, 2015, 1, .	4.7	173
23	Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1078-1083.	3.3	171
24	Targeted Molecular Probes for Imaging Atherosclerotic Lesions With Magnetic Resonance Using Antibodies That Recognize Oxidation-Specific Epitopes. Circulation, 2008, 117, 3206-3215.	1.6	170
25	Modified natural nanoparticles as contrast agents for medical imaging. Advanced Drug Delivery Reviews, 2010, 62, 329-338.	6.6	165
26	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	6.6	161
27	Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine, 2007, 2, 307-324.	1.7	160
28	Imaging and Nanomedicine in Inflammatory Atherosclerosis. Science Translational Medicine, 2014, 6, 239sr1.	5.8	157
29	Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. Journal of the American College of Cardiology, 2018, 71, 527-542.	1.2	149
30	PET Imaging of Tumor-Associated Macrophages with ⁸⁹ Zr-Labeled High-Density Lipoprotein Nanoparticles. Journal of Nuclear Medicine, 2015, 56, 1272-1277.	2.8	145
31	Multimodal Clinical Imaging To Longitudinally Assess a Nanomedical Anti-Inflammatory Treatment in Experimental Atherosclerosis. Molecular Pharmaceutics, 2010, 7, 2020-2029.	2.3	144
32	Paramagnetic Lipid-Coated Silica Nanoparticles with a Fluorescent Quantum Dot Core: A New Contrast Agent Platform for Multimodality Imaging. Bioconjugate Chemistry, 2008, 19, 2471-2479.	1.8	143
33	Synergistic Targeting of α _v β ₃ Integrin and Galectin-1 with Heteromultivalent Paramagnetic Liposomes for Combined MR Imaging and Treatment of Angiogenesis. Nano Letters, 2010, 10, 52-58.	4.5	143
34	Annexin A5-Conjugated Quantum Dots with a Paramagnetic Lipidic Coating for the Multimodal Detection of Apoptotic Cells. Bioconjugate Chemistry, 2006, 17, 865-868.	1.8	141
35	Molecular imaging of tumor angiogenesis using αvβ3-integrin targeted multimodal quantum dots. Angiogenesis, 2009, 12, 17-24.	3.7	139
36	Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano, 2017, 11, 5785-5799.	7.3	137

#	Article	IF	CITATIONS
37	Relaxivity of liposomal paramagnetic MRI contrast agents. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2005, 18, 186-192.	1.1	128
38	Magnetic resonance imaging of vulnerable atherosclerotic plaques: Current imaging strategies and molecular imaging probes. Journal of Magnetic Resonance Imaging, 2007, 26, 460-479.	1.9	128
39	HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages. Bioconjugate Chemistry, 2015, 26, 443-451.	1.8	127
40	Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1039-1046.	1.7	127
41	Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEGâ€micelles. Magnetic Resonance in Medicine, 2007, 58, 1164-1170.	1.9	126
42	Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nature Communications, 2017, 8, 14064.	5.8	118
43	Investigating supramolecular systems using Förster resonance energy transfer. Chemical Society Reviews, 2018, 47, 7027-7044.	18.7	118
44	Annexin A5-Functionalized Bimodal Lipid-Based Contrast Agents for the Detection of Apoptosis. Bioconjugate Chemistry, 2006, 17, 741-749.	1.8	117
45	Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy. Nature Communications, 2016, 7, 11221.	5.8	111
46	High-Density Lipoprotein–Based Contrast Agents for Multimodal Imaging of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 169-176.	1.1	106
47	Atherosclerotic Plaque Targeting Mechanism of Long-Circulating Nanoparticles Established by Multimodal Imaging. ACS Nano, 2015, 9, 1837-1847.	7.3	105
48	Synthesis of Polymer–Lipid Nanoparticles for Image-Guided Delivery of Dual Modality Therapy. Bioconjugate Chemistry, 2013, 24, 1429-1434.	1.8	104
49	Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics. ACS Nano, 2013, 7, 9975-9983.	7.3	104
50	An ApoAâ€l Mimetic Peptide Highâ€Densityâ€Lipoproteinâ€Based MRI Contrast Agent for Atherosclerotic Plaque Composition Detection. Small, 2008, 4, 1437-1444.	5.2	103
51	lron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials, 2009, 30, 6947-6954.	5.7	103
52	A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. Contrast Media and Molecular Imaging, 2010, 5, 231-236.	0.4	103
53	RGD peptide functionalized and reconstituted highâ€density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB Journal, 2010, 24, 1689-1699.	0.2	102
54	Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell, 2020, 183, 786-801.e19.	13.5	101

#	Article	IF	CITATIONS
55	Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis, 2010, 13, 161-173.	3.7	96
56	Annexin A5-Functionalized Bimodal Nanoparticles for MRI and Fluorescence Imaging of Atherosclerotic Plaques. Bioconjugate Chemistry, 2010, 21, 1794-1803.	1.8	96
57	Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6731-E6740.	3.3	95
58	Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nature Communications, 2016, 7, 11838.	5.8	94
59	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	11.6	94
60	Nonpharmacological Lipoprotein Apheresis Reduces Arterial Inflammation inÂFamilial Hypercholesterolemia. Journal of the American College of Cardiology, 2014, 64, 1418-1426.	1.2	90
61	Incorporation of an apoEâ€derived lipopeptide in highâ€density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media and Molecular Imaging, 2008, 3, 233-242.	0.4	87
62	Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Review of Molecular Diagnostics, 2013, 13, 567-580.	1.5	86
63	A Modular Labeling Strategy for In Vivo PET and Near-Infrared Fluorescence Imaging of Nanoparticle Tumor Targeting. Journal of Nuclear Medicine, 2014, 55, 1706-1711.	2.8	85
64	Early in vivo assessment of angiostatic therapy efficacy by molecular MRI. FASEB Journal, 2007, 21, 378-383.	0.2	82
65	InÂVivo PET Imaging of HDL in MultipleÂAtherosclerosisÂModels. JACC: Cardiovascular Imaging, 2016, 9, 950-961.	2.3	78
66	Proteinâ^'Liposome Conjugates Using Cysteine-Lipids And Native Chemical Ligation. Bioconjugate Chemistry, 2007, 18, 590-596.	1.8	77
67	Gold Nanocrystal Labeling Allows Low-Density Lipoprotein Imaging from the Subcellular to Macroscopic Level. ACS Nano, 2013, 7, 9761-9770.	7.3	77
68	Magnetic quantum dots for multimodal imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 475-491.	3.3	76
69	Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chemical Communications, 2012, 48, 5835.	2.2	76
70	In Vivo Characterization of a New Abdominal Aortic Aneurysm Mouse Model With Conventional and Molecular Magnetic Resonance Imaging. Journal of the American College of Cardiology, 2011, 58, 2522-2530.	1.2	74
71	Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. Journal of Lipid Research, 2015, 56, 703-712.	2.0	73
72	Imaging Macrophage and Hematopoietic Progenitor Proliferation in Atherosclerosis. Circulation Research, 2015, 117, 835-845.	2.0	72

#	Article	IF	CITATIONS
73	Cellular compartmentalization of internalized paramagnetic liposomes strongly influences both T ₁ and T ₂ relaxivity. Magnetic Resonance in Medicine, 2009, 61, 1022-1032.	1.9	71
74	Collagen-Specific Peptide Conjugated HDL Nanoparticles as MRI Contrast Agent to Evaluate Compositional Changes in Atherosclerotic Plaque Regression. JACC: Cardiovascular Imaging, 2013, 6, 373-384.	2.3	71
75	Quantum Dot and Cy5.5 Labeled Nanoparticles to Investigate Lipoprotein Biointeractions via Förster Resonance Energy Transfer. Nano Letters, 2010, 10, 5131-5138.	4.5	70
76	Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS Nano, 2019, 13, 13759-13774.	7.3	70
77	Trained immunity in organ transplantation. American Journal of Transplantation, 2020, 20, 10-18.	2.6	70
78	Immune Checkpoint Inhibitor Therapy Aggravates T Cell–Driven Plaque Inflammation in Atherosclerosis. JACC: CardioOncology, 2020, 2, 599-610.	1.7	69
79	Tumor Targeting by α _v β ₃ -Integrin-Specific Lipid Nanoparticles Occurs <i>via</i> Phagocyte Hitchhiking. ACS Nano, 2020, 14, 7832-7846.	7.3	69
80	Multifunctional imaging nanoprobes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 138-150.	3.3	66
81	Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging, 2019, 12, 2015-2026.	2.3	66
82	lmaging and quantifying the morphology of an organic–inorganic nanoparticle at the sub-nanometre level. Nature Nanotechnology, 2010, 5, 538-544.	15.6	65
83	Comparison of Synthetic High Density Lipoprotein (HDL) Contrast Agents for MR Imaging of Atherosclerosis. Bioconjugate Chemistry, 2009, 20, 937-943.	1.8	64
84	Imaging Systemic Inflammatory Networks in Ischemic Heart Disease. Journal of the American College of Cardiology, 2015, 65, 1583-1591.	1.2	64
85	The biological properties of iron oxide core high-density lipoprotein in experimental atherosclerosis. Biomaterials, 2011, 32, 206-213.	5.7	63
86	Diagnostic and therapeutic strategies for small abdominal aortic aneurysms. Nature Reviews Cardiology, 2011, 8, 338-347.	6.1	63
87	High-Relaxivity Gadolinium-Modified High-Density Lipoproteins as Magnetic Resonance Imaging Contrast Agents. Journal of Physical Chemistry B, 2009, 113, 6283-6289.	1.2	62
88	High-Density Lipoprotein Nanobiologics for Precision Medicine. Accounts of Chemical Research, 2018, 51, 127-137.	7.6	62
89	Near-Infrared Fluorescence Energy Transfer Imaging of Nanoparticle Accumulation and Dissociation Kinetics in Tumor-Bearing Mice. ACS Nano, 2013, 7, 10362-10370.	7.3	60
90	RAF/MEK/extracellular signal–related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. Journal of Experimental Medicine, 2018, 215, 319-336.	4.2	58

#	Article	IF	CITATIONS
91	Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. American Journal of Transplantation, 2018, 18, 1247-1255.	2.6	58
92	Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magnetic Resonance in Medicine, 2006, 55, 1170-1174.	1.9	57
93	Imaging Neuroinflammation after Stroke: Current Status of Cellular and Molecular MRI Strategies. Cerebrovascular Diseases, 2012, 33, 392-402.	0.8	55
94	Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 146-161.	3.3	51
95	HDL mimetic CER-001 targets atherosclerotic plaques in patients. Atherosclerosis, 2016, 251, 381-388.	0.4	51
96	Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Science Translational Medicine, 2019, 11, .	5.8	51
97	Nanomedical Theranostics in Cardiovascular Disease. Current Cardiovascular Imaging Reports, 2012, 5, 19-25.	0.4	50
98	MRI of ICAM-1 Upregulation After Stroke: the Importance of Choosing the Appropriate Target-Specific Particulate Contrast Agent. Molecular Imaging and Biology, 2013, 15, 411-422.	1.3	50
99	Magnetic Resonance Molecular Imaging of Thrombosis in an Arachidonic Acid Mouse Model Using an Activated Platelet Targeted Probe. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 403-410.	1.1	49
100	Nanomedicines for endothelial disorders. Nano Today, 2015, 10, 759-776.	6.2	49
101	Multimodality nanotracers for cardiovascular applications. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, S103-S111.	3.3	48
102	Monocyte and Macrophage Dynamics in the Cardiovascular System. Journal of the American College of Cardiology, 2018, 72, 2198-2212.	1.2	47
103	Applying nanomedicine in maladaptive inflammation and angiogenesis. Advanced Drug Delivery Reviews, 2017, 119, 143-158.	6.6	46
104	Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality. NMR in Biomedicine, 2013, 26, 766-780.	1.6	45
105	Regulating trained immunity with nanomedicine. Nature Reviews Materials, 2022, 7, 465-481.	23.3	45
106	A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis. Journal of Controlled Release, 2017, 262, 47-57.	4.8	44
107	Nanoimmunotherapy to treat ischaemic heart disease. Nature Reviews Cardiology, 2019, 16, 21-32.	6.1	43
108	Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice. Cells, 2020, 9, 1987.	1.8	43

#	Article	IF	CITATIONS
109	Morphology, binding behavior and MRâ€properties of paramagnetic collagenâ€binding liposomes. Contrast Media and Molecular Imaging, 2009, 4, 81-88.	0.4	42
110	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	15.6	42
111	Prosaposin mediates inflammation in atherosclerosis. Science Translational Medicine, 2021, 13, .	5.8	42
112	Anginex-Conjugated Liposomes for Targeting of Angiogenic Endothelial Cells. Bioconjugate Chemistry, 2007, 18, 785-790.	1.8	41
113	InÂVivo Imaging of Enhanced Leukocyte Accumulation in Atherosclerotic Lesions in Humans. Journal of the American College of Cardiology, 2014, 64, 1019-1029.	1.2	41
114	Nuclear imaging approaches facilitating nanomedicine translation. Advanced Drug Delivery Reviews, 2020, 154-155, 123-141.	6.6	41
115	PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a HumanÂAntibody Detects ClinicallyÂRelevant Atherothrombosis. Journal of the American College of Cardiology, 2018, 71, 321-335.	1.2	39
116	HDL as a contrast agent for medical imaging. Clinical Lipidology, 2009, 4, 493-500.	0.4	37
117	Pharmaceutical development and preclinical evaluation of a GMP-grade anti-inflammatory nanotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1133-1140.	1.7	37
118	Quantum dots for multimodal molecular imaging of angiogenesis. Angiogenesis, 2010, 13, 131-134.	3.7	36
119	A Versatile and Tunable Coating Strategy Allows Control of Nanocrystal Delivery to Cell Types in the Liver. Bioconjugate Chemistry, 2011, 22, 353-361.	1.8	36
120	Improved Magnetic Resonance Molecular Imaging of Tumor Angiogenesis by Avidin-Induced Clearance of Nonbound Bimodal Liposomes. Neoplasia, 2008, 10, 1459-1469.	2.3	33
121	Tyrosine polyethylene glycol (PEG)â€micelle magnetic resonance contrast agent for the detection of lipid rich areas in atherosclerotic plaque. Magnetic Resonance in Medicine, 2009, 62, 1195-1201.	1.9	33
122	Near-Infrared Quantum Dot and ⁸⁹ Zr Dual-Labeled Nanoparticles for <i>in Vivo</i> Cerenkov Imaging. Bioconjugate Chemistry, 2017, 28, 600-608.	1.8	33
123	Liposomal prednisolone promotes macrophage lipotoxicity in experimental atherosclerosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1463-1470.	1.7	32
124	Imaging Cardiovascular and Lung Macrophages With the Positron Emission Tomography Sensor ⁶⁴ Cu-Macrin in Mice, Rabbits, and Pigs. Circulation: Cardiovascular Imaging, 2020, 13, e010586.	1.3	32
125	Nanomedicine Captures Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 801-802.	1.1	31
126	Preparation and stability of lipid-coated nanocapsules of cisplatin: anionic phospholipid specificity. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1663, 135-142.	1.4	30

#	Article	IF	CITATIONS
127	Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques. NMR in Biomedicine, 2015, 28, 1304-1314.	1.6	30
128	Kinetics of avidinâ€induced clearance of biotinylated bimodal liposomes for improved MR molecular imaging. Magnetic Resonance in Medicine, 2008, 60, 1444-1456.	1.9	29
129	Contrast enhancement by differently sized paramagnetic MRI contrast agents in mice with two phenotypes of atherosclerotic plaque. Contrast Media and Molecular Imaging, 2011, 6, 35-45.	0.4	29
130	Well-Defined, Multifunctional Nanostructures of a Paramagnetic Lipid and a Lipopeptide for Macrophage Imaging. Journal of the American Chemical Society, 2009, 131, 406-407.	6.6	28
131	Realâ€Time Monitoring of Nanoparticle Formation by FRET Imaging. Angewandte Chemie - International Edition, 2017, 56, 2923-2926.	7.2	27
132	Imaging the Efficacy of Anti-Inflammatory Liposomes in a Rabbit Model of Atherosclerosis by Non-Invasive Imaging. Methods in Enzymology, 2012, 508, 211-228.	0.4	26
133	Tumor Angiogenesis Phenotyping by Nanoparticle-facilitated Magnetic Resonance and Near-infrared Fluorescence Molecular Imaging. Neoplasia, 2012, 14, 964-973.	2.3	26
134	Magnetic Resonance Molecular Imaging Contrast Agents and Their Application in Atherosclerosis. Topics in Magnetic Resonance Imaging, 2007, 18, 409-417.	0.7	25
135	Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer. Chemical Science, 2018, 9, 5646-5657.	3.7	25
136	An ⁸⁹ Zr-HDL PET Tracer Monitors Response to a CSF1R Inhibitor. Journal of Nuclear Medicine, 2020, 61, 433-436.	2.8	25
137	Fluorescent nanoparticles for the accurate detection of drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 1881-1894.	2.4	24
138	Hydroxychloroquine Inhibits the Trained Innate Immune Response to Interferons. Cell Reports Medicine, 2020, 1, 100146.	3.3	24
139	An iterative sparse deconvolution method for simultaneous multicolor ¹⁹ Fâ€MRI of multiple contrast agents. Magnetic Resonance in Medicine, 2020, 83, 228-239.	1.9	23
140	Multimodal Positron Emission Tomography Imaging to Quantify Uptake of ⁸⁹ Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall. Bioconjugate Chemistry, 2020, 31, 360-368.	1.8	22
141	Molecular MR Imaging of Collagen in Mouse Atherosclerosis by Using Paramagnetic CNA35 Micelles. European Journal of Inorganic Chemistry, 2012, 2012, 2115-2125.	1.0	21
142	Reversible Electroporation–Mediated Liposomal Doxorubicin Delivery to Tumors Can Be Monitored With ⁸⁹ Zr-Labeled Reporter Nanoparticles. Molecular Imaging, 2018, 17, 153601211774972.	0.7	21
143	A modular approach toward producing nanotherapeutics targeting the innate immune system. Science Advances, 2021, 7, .	4.7	20
144	Current and Emerging Preclinical Approaches for Imaging-Based Characterization of Atherosclerosis. Molecular Imaging and Biology, 2018, 20, 869-887.	1.3	19

#	Article	IF	CITATIONS
145	Targeting myeloperoxidase in inflammatory atherosclerosis. European Heart Journal, 2018, 39, 3311-3313.	1.0	19
146	Atherosclerosis Immunoimaging by Positron Emission Tomography. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 865-873.	1.1	18
147	Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging. Journal of Nuclear Cardiology, 2020, 27, 1126-1141.	1.4	17
148	Imaging of angiogenesis. Angiogenesis, 2010, 13, 71-74.	3.7	16
149	Synthesis and in vitro evaluation of a multifunctional and surface-switchable nanoemulsion platform. Chemical Communications, 2013, 49, 9392.	2.2	16
150	Nanoemulsion-Based Delivery of Fluorescent PARP Inhibitors in Mouse Models of Small Cell Lung Cancer. Bioconjugate Chemistry, 2018, 29, 3776-3782.	1.8	15
151	Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy. Angiogenesis, 2014, 17, 93-107.	3.7	14
152	Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Scientific Reports, 2022, 12, 6185.	1.6	14
153	Nanoclusters of Iron Oxide: Effect of Core Composition on Structure, Biocompatibility, and Cell Labeling Efficacy. Bioconjugate Chemistry, 2012, 23, 941-950.	1.8	13
154	Investigating the Cellular Specificity in Tumors of a Surface-Converting Nanoparticle by Multimodal Imaging. Bioconjugate Chemistry, 2017, 28, 1413-1421.	1.8	13
155	Imaging-guided nanomedicine development. Current Opinion in Chemical Biology, 2021, 63, 78-85.	2.8	13
156	Systems Biology and Noninvasive Imaging of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, e1-8.	1.1	12
157	Hybrid PET/MR Kernelised Expectation Maximisation Reconstruction for Improved Image-Derived Estimation of the Input Function from the Aorta of Rabbits. Contrast Media and Molecular Imaging, 2019, 2019, 1-12.	0.4	11
158	Influence of cellâ€internalization on relaxometric, optical and compositional properties of targeted paramagnetic quantum dot micelles. Contrast Media and Molecular Imaging, 2011, 6, 100-109.	0.4	10
159	The Complex Fate in Plasma of Gadolinium Incorporated into High-Density Lipoproteins Used for Magnetic Imaging of Atherosclerotic Plaques. Bioconjugate Chemistry, 2013, 24, 1039-1048.	1.8	10
160	Probing Lipid Coating Dynamics of Quantum Dot Core Micelles via Förster Resonance Energy Transfer. Small, 2014, 10, 1163-1170.	5.2	10
161	From local to global. Nature Nanotechnology, 2017, 12, 840-841.	15.6	10
162	Embracing nanomaterials' interactions with the innate immune system. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1719.	3.3	10

#	Article	IF	CITATIONS
163	Science to Practice: Versatile Method to Track Transplanted Encapsulated Islet Cells with Multiple Imaging Modalities. Radiology, 2011, 258, 1-2.	3.6	9
164	Cyclic Arginine–Glycine–Aspartateâ€Decorated Lipid Nanoparticle Targeting toward Inflammatory Lesions Involves Hitchhiking with Phagocytes. Advanced Science, 2021, 8, 2100370.	5.6	9
165	Nanoengineering Apolipoprotein A1â€Based Immunotherapeutics. Advanced Therapeutics, 2021, 4, 2100083.	1.6	8
166	Diverse ultrastructural landscape of atherosclerotic endothelium. Atherosclerosis, 2021, 339, 35-45.	0.4	8
167	The evolution of MRI probes: from the initial development to stateâ€ofâ€theâ€art applications. NMR in Biomedicine, 2013, 26, 725-727.	1.6	7
168	Realâ€Time Monitoring of Nanoparticle Formation by FRET Imaging. Angewandte Chemie, 2017, 129, 2969-2972.	1.6	7
169	Specific Binding of Liposomal Nanoparticles through Inverse Electronâ€Demand Diels–Alder Click Chemistry. ChemistryOpen, 2017, 6, 615-619.	0.9	7
170	Nanocrystal Core Lipoprotein Biomimetics for Imaging of Lipoproteins and Associated Diseases. Current Cardiovascular Imaging Reports, 2013, 6, 45-54.	0.4	6
171	High-density lipoprotein is a nanoparticle, but not all nanoparticles are high-density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3548.	3.3	6
172	Multimodal imaging of bacterial-host interface in mice and piglets with <i>Staphylococcus aureus</i> endocarditis. Science Translational Medicine, 2020, 12, .	5.8	6
173	Cardiovascular Immunotherapy and the Role of Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e167-e171.	1.1	5
174	Integrating nanomedicine and imaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170110.	1.6	5
175	A Comprehensive Procedure to Evaluate the In Vivo Performance of Cancer Nanomedicines. Journal of Visualized Experiments, 2017, , .	0.2	5
176	Whole-Body Atherosclerosis Imaging by Positron Emission Tomography/Magnetic Resonance Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1123-1134.	1.1	5
177	Kinase Inhibitors' Effects on Innate Immunity in Solid Cancers. Cancers, 2021, 13, 5695.	1.7	5
178	Modified Lipoproteins As Contrast Agents For Molecular Imaging. Future Lipidology, 2007, 2, 587-590.	0.5	4
179	Conformational Changes in High-Density Lipoprotein Nanoparticles Induced by High Payloads of Paramagnetic Lipids. ACS Omega, 2016, 1, 470-475.	1.6	4
180	Development and Multiparametric Evaluation of Experimental Atherosclerosis in Rabbits. Methods in Molecular Biology, 2018, 1816, 385-400.	0.4	4

#	Article	IF	CITATIONS
181	Targeting Trained Innate Immunity With Nanobiologics to Treat Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1839-1850.	1.1	4
182	Imaging-guided revival of nanomedicine?. Nanomedicine, 2017, 12, 89-90.	1.7	3
183	Ultra-high resolution, 3-dimensional magnetic resonance imaging of the atherosclerotic vessel wall at clinical 7T. PLoS ONE, 2020, 15, e0241779.	1.1	3
184	Employing nanobodies for immune landscape profiling by PET imaging in mice. STAR Protocols, 2021, 2, 100434.	0.5	2
185	Imaging Tropoelastin in Atherosclerosis. Circulation: Cardiovascular Imaging, 2018, 11, e008147.	1.3	1
186	Nanoparticle Contrast Agents for Cardiovascular Medical Imaging. , 2011, , 3-24.		1
187	New Radiotracers, Reporter Probes and Contrast Agents. , 0, , 191-221.		0
188	Combination nanotherapy penetrates atherosclerosis. Cardiovascular Research, 2016, 109, 191-192.	1.8	0
189	Bimodal Liposomes and Paramagnetic QD-Micelles for Multimodality Molecular Imaging of Tumor Angiogenesis. , 2008, , 487-512.		0