Karsten Kruse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1756261/publications.pdf Version: 2024-02-01

KADSTEN KDUSE

#	Article	IF	CITATIONS
1	Motor usage imprints microtubule stability along the shaft. Developmental Cell, 2022, 57, 5-18.e8.	3.1	30
2	Integer topological defects organize stresses driving tissue morphogenesis. Nature Materials, 2022, 21, 588-597.	13.3	62
3	Quantifying Material Properties of Cell Monolayers by Analyzing Integer Topological Defects. Physical Review Letters, 2021, 126, 028101.	2.9	23
4	Properties of twisted topological defects in 2D nematic liquid crystals. Soft Matter, 2021, 17, 7408-7417.	1.2	7
5	Excitable actin dynamics and amoeboid cell migration. PLoS ONE, 2021, 16, e0246311.	1.1	11
6	Pinching the cortex of live cells reveals thickness instabilities caused by myosin II motors. Science Advances, 2021, 7, .	4.7	10
7	Integer topological defects of cell monolayers: Mechanics and flows. Physical Review E, 2021, 103, 012405.	0.8	17
8	Deterministic actin waves as generators of cell polarization cues. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 826-835.	3.3	39
9	Buckling of an Epithelium Growing under Spherical Confinement. Developmental Cell, 2020, 54, 655-668.e6.	3.1	75
10	Spontaneous formation of chaotic protrusions in a polymerizing active gel layer. New Journal of Physics, 2020, 22, 013003.	1.2	5
11	Accuracy of position determination in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>Ca </mml:mi> Physical Review E, 2019, 100, 022401.</mml:mrow></mml:msup></mml:math 	mr ov &> < m	ml 3 mrow> <m< td=""></m<>
12	Positional Information Readout in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>Ca</mml:mi></mml:mrow><mml:mrow><mm Signaling. Physical Review Letters, 2019, 123, 058102.</mm </mml:mrow></mml:msup></mml:mrow></mml:math>	nl:n 2 n9•2 <td>nnal:mn><mn< td=""></mn<></td>	nnal:mn> <mn< td=""></mn<>
13	Sound of an axon's growth. Physical Review E, 2019, 99, 050401.	0.8	5
14	Nonequilibrium physics in biology. Reviews of Modern Physics, 2019, 91, .	16.4	123
15	Aurora A depletion reveals centrosome-independent polarization mechanism in Caenorhabditis elegans. ELife, 2019, 8, .	2.8	56
16	Optical control of cytoplasmic flows. Nature Cell Biology, 2018, 20, 227-228.	4.6	4
17	The Min-protein oscillations in <i>Escherichia coli</i> : an example of self-organized cellular protein waves. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170111.	1.8	39
18	A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. Journal of Physiology, 2018, 596, 2681-2698.	1.3	64

#	Article	IF	CITATIONS
19	The Science of Living Matter for Tomorrow. Cell Systems, 2018, 6, 400-402.	2.9	5
20	FtsZ filaments have the opposite kinetic polarity of microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10768-10773.	3.3	41
21	Effects of geometry and topography on Min-protein dynamics. PLoS ONE, 2018, 13, e0203050.	1.1	10
22	Anomalous percolation features in molecular evolution. Physical Review E, 2018, 98, 022408.	0.8	1
23	Active bundles of polar and bipolar filaments. Physical Review E, 2018, 98, 012413.	0.8	5
24	Spontaneous buckling of contractile poroelastic actomyosin sheets. Nature Communications, 2018, 9, 2461.	5.8	37
25	Intracellular Oscillations and Waves. Annual Review of Condensed Matter Physics, 2017, 8, 239-264.	5.2	70
26	Interface between Physics and Biology: Training a New Generation of Creative Bilingual Scientists. Trends in Cell Biology, 2017, 27, 541-543.	3.6	5
27	Load Adaptation of Lamellipodial Actin Networks. Cell, 2017, 171, 188-200.e16.	13.5	202
28	Making waves. New Journal of Physics, 2017, 19, 011001.	1.2	2
29	PKCα diffusion and translocation are independent of an intact cytoskeleton. Scientific Reports, 2017, 7, 475.	1.6	5
30	Still and rotating myosin clusters determine cytokinetic ring constriction. Nature Communications, 2016, 7, 11860.	5.8	55
31	Actin kinetics shapes cortical network structure and mechanics. Science Advances, 2016, 2, e1501337.	4.7	130
32	C2-domain mediated nano-cluster formation increases calcium signaling efficiency. Scientific Reports, 2016, 6, 36028.	1.6	15
33	Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors. Physical Review E, 2016, 93, 062415.	0.8	9
34	Unbounded growth patterns of reproducing, competing polymers—similarities to biological evolution. New Journal of Physics, 2016, 18, 103003.	1.2	4
35	Cell Crawling Driven by Spontaneous Actin Polymerization Waves. Biological and Medical Physics Series, 2016, , 69-93.	0.3	3
36	Generation of Stable Overlaps between Antiparallel Filaments. Physical Review Letters, 2015, 115, 118103.	2.9	19

3

#	Article	IF	CITATIONS
37	Segregation of diffusible and directionally moving particles on a polar filament. Physical Review E, 2014, 89, 042713.	0.8	6
38	Generation of stationary and moving vortices in active polar fluids in the planar Taylor-Couette geometry. Physical Review E, 2014, 90, 052703.	0.8	8
39	Effects of molecular noise on bistable protein distributions in rod-shaped bacteria. Interface Focus, 2014, 4, 20140039.	1.5	8
40	Spiral actin-polymerization waves can generate amoeboidal cell crawling. New Journal of Physics, 2014, 16, 055007.	1.2	40
41	Effets collectifs des moteurs moléculaires : fonctions biologiques des oscillations mécaniques. , 2014, , 4-9.	0.1	0
42	The actin cortex as an active wetting layer. European Physical Journal E, 2013, 36, 52.	0.7	42
43	Continuum descriptions of cytoskeletal dynamics. Journal of Nanobiotechnology, 2013, 11, S5.	4.2	Ο
44	Analysis of turnover dynamics of the submembranous actin cortex. Molecular Biology of the Cell, 2013, 24, 757-767.	0.9	181
45	Membrane Binding of MinE Allows for a Comprehensive Description of Min-Protein Pattern Formation. PLoS Computational Biology, 2013, 9, e1003347.	1.5	72
46	Treadmilling and length distributions of active polar filaments. Journal of Chemical Physics, 2013, 139, 164907.	1.2	18
47	The Taylor–Couette motor: spontaneous flows of active polar fluids between two coaxial cylinders. New Journal of Physics, 2012, 14, 023001.	1.2	59
48	Length Regulation of Active Biopolymers by Molecular Motors. Physical Review Letters, 2012, 108, 258103.	2.9	58
49	Impact of motor molecules on the dynamics of treadmilling filaments. Physical Review E, 2012, 86, 051906.	0.8	8
50	Geometry sensing by self-organized protein patterns. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15283-15288.	3.3	115
51	7.13 Bacterial Organization in Space and Time. , 2012, , 208-221.		3
52	Protein Self-Organization: Lessons from the Min System. Annual Review of Biophysics, 2011, 40, 315-336.	4.5	124
53	Spontaneous Mechanical Oscillations. Current Topics in Developmental Biology, 2011, 95, 67-91.	1.0	24
54	Cell Motility Resulting from Spontaneous Polymerization Waves. Physical Review Letters, 2011, 107, 258103.	2.9	72

#	Article	IF	CITATIONS
55	Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nature Structural and Molecular Biology, 2011, 18, 577-583.	3.6	182
56	Self-organization in systems of treadmilling filaments. European Physical Journal E, 2010, 31, 95-104.	0.7	13
57	Morphogenetic processes in animals and plants. European Physical Journal E, 2010, 33, 97-97.	0.7	0
58	Spontaneous sarcomere dynamics. Chaos, 2010, 20, 045122.	1.0	8
59	Intra- and intercellular fluctuations in Min-protein dynamics decrease with cell length. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6134-6139.	3.3	46
60	Filament turnover stabilizes contractile cytoskeletal structures. Europhysics Letters, 2010, 91, 68003.	0.7	11
61	The Mechanism of E-Ring Formation During Min Oscillations. Biophysical Journal, 2010, 98, 556a.	0.2	Ο
62	Uncorrelated changes of subunit stability can generate length-dependent disassembly of treadmilling filaments. Physical Biology, 2009, 6, 046016.	0.8	23
63	The immunological synapse controls local and global calcium signals in T lymphocytes. Immunological Reviews, 2009, 231, 132-147.	2.8	48
64	Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro. Science, 2008, 320, 789-792.	6.0	499
65	A simple self-organized swimmer driven by molecular motors. Europhysics Letters, 2008, 84, 68002.	0.7	25
66	Superdiffusion of morphogens by receptor-mediated transport. New Journal of Physics, 2008, 10, 023019.	1.2	12
67	Cytoskeletal waves in the absence of molecular motors. Europhysics Letters, 2008, 83, 18003.	0.7	56
68	Spontaneous waves in muscle fibres. New Journal of Physics, 2007, 9, 417-417.	1.2	46
69	Self-Organization of Treadmilling Filaments. Physical Review Letters, 2007, 99, 228104.	2.9	29
70	Morphogen transport in epithelia. Physical Review E, 2007, 75, 011901.	0.8	45
71	Surface waves of Min-proteins. Physical Biology, 2007, 4, 38-47.	0.8	15
72	Hydrodynamic theory for multi-component active polar gels. New Journal of Physics, 2007, 9, 422-422.	1.2	108

#	Article	IF	CITATIONS
73	Stress Generation and Filament Turnover during Actin Ring Constriction. PLoS ONE, 2007, 2, e696.	1.1	99
74	Active behavior of the Cytoskeleton. Physics Reports, 2007, 449, 3-28.	10.3	371
75	An experimentalist's guide to computational modelling of the Min system. Molecular Microbiology, 2007, 63, 1279-1284.	1.2	77
76	Driven Diffusive Systems of Active Filament Bundles. Journal of Statistical Physics, 2007, 128, 95-110.	0.5	3
77	Dynamics and mechanics of motor-filament systems. European Physical Journal E, 2006, 20, 459-465.	0.7	12
78	Spindle Oscillations during Asymmetric Cell Division Require a Threshold Number of Active Cortical Force Generators. Current Biology, 2006, 16, 2111-2122.	1.8	177
79	Mobility of Min-proteins inEscherichia colimeasured by fluorescence correlation spectroscopy. Physical Biology, 2006, 3, 255-263.	0.8	79
80	Contractility and retrograde flow in lamellipodium motion. Physical Biology, 2006, 3, 130-137.	0.8	160
81	Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. European Physical Journal E, 2005, 16, 5-16.	0.7	441
82	Theory of Mitotic Spindle Oscillations. Physical Review Letters, 2005, 94, 108104.	2.9	144
83	Oscillations in cell biology. Current Opinion in Cell Biology, 2005, 17, 20-26.	2.6	181
84	Continuum Description of the Cytoskeleton: Ring Formation in the Cell Cortex. Physical Review Letters, 2005, 95, 258103.	2.9	49
85	Filament Depolymerization by Motor Molecules. Physical Review Letters, 2005, 94, 108102.	2.9	56
86	Cellular organization by self-organization. Journal of Cell Biology, 2005, 168, 533-536.	2.3	83
87	Min-oscillations inEscherichia coliinduced by interactions of membrane-bound proteins. Physical Biology, 2005, 2, 89-97.	0.8	52
88	A Self-Organized Vortex Array of Hydrodynamically Entrained Sperm Cells. Science, 2005, 309, 300-303.	6.0	492
89	Robust Formation of Morphogen Gradients. Physical Review Letters, 2005, 94, 018103.	2.9	94
90	Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments. Physical Review Letters, 2004, 92, 078101.	2.9	499

6

#	Article	IF	CITATIONS
91	Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development (Cambridge), 2004, 131, 4843-4856.	1.2	106
92	Self-organization and mechanical properties of active filament bundles. Physical Review E, 2003, 67, 051913.	0.8	82
93	Continuum theory of contractile fibres. Europhysics Letters, 2003, 64, 716-722.	0.7	34
94	Growth of fingerlike protrusions driven by molecular motors. Physical Review E, 2002, 66, 031904.	0.8	34
95	A Dynamic Model for Determining the Middle of Escherichia coli. Biophysical Journal, 2002, 82, 618-627.	0.2	152
96	Self-Propagating Patterns in Active Filament Bundles. Physical Review Letters, 2001, 87, 138101.	2.9	56
97	Bloch Electrons in a Magnetic Field: Why Does Chaos Send Electrons the Hard Way?. Physical Review Letters, 2000, 84, 2929-2932.	2.9	19
98	Actively Contracting Bundles of Polar Filaments. Physical Review Letters, 2000, 85, 1778-1781.	2.9	181
99	Avoided Band Crossings: Tuning Metal-Insulator Transitions in Chaotic Systems. Physical Review Letters, 1998, 80, 137-140.	2.9	23