Florence Portet-Koltalo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1756244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytoremediation of PCB: contaminated Algerian soils using native agronomics plants. Environmental Geochemistry and Health, 2022, 44, 117-132.	1.8	7
2	Enhanced Electroremediation of Metals from Dredged Marine Sediment under Periodic Voltage Using EDDS and Citric Acid. Journal of Marine Science and Engineering, 2022, 10, 553.	1.2	6
3	Direct thermal desorption-gas chromatography-tandem mass spectrometry versus microwave assisted extraction and GC-MS for the simultaneous analysis of polyaromatic hydrocarbons (PAHs, PCBs) from sediments. Talanta, 2022, 250, 123735.	2.9	11
4	Determination of multi-class polyaromatic compounds in sediments by a simple modified matrix solid phase dispersive extraction. Talanta, 2021, 221, 121601.	2.9	12
5	Evaluation of polybrominated diphenyl ether (PBDE) flame retardants from various materials in professional seating furnishing wastes from French flows. Waste Management, 2021, 131, 108-116.	3.7	7
6	Pilot-scale direct UV-C photodegradation of pesticides in groundwater and recycled wastewater for agricultural use. Journal of Environmental Chemical Engineering, 2021, 9, 106120.	3.3	5
7	Historical and post-ban releases of organochlorine pesticides recorded in sediment deposits in an agricultural watershed, France. Environmental Pollution, 2021, 288, 117769.	3.7	7
8	Bioaccessibility of polycyclic aromatic compounds (PAHs, PCBs) and trace elements: Influencing factors and determination in a river sediment core. Journal of Hazardous Materials, 2020, 384, 121499.	6.5	22
9	Temporal trends, sources, and relationships between sediment characteristics and polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediment cores from the major Seine estuary tributary, France. Applied Geochemistry, 2020, 122, 104749.	1.4	17
10	Reconstruction of anthropogenic activities in legacy sediments from the Eure River, a major tributary of the Seine Estuary (France). Catena, 2020, 190, 104513.	2.2	13
11	Flux estimation, temporal trends and source determination of trace metal contamination in a major tributary of the Seine estuary, France. Science of the Total Environment, 2020, 724, 138249.	3.9	6
12	Electro-dewatering of dredged sediments by combined effects of mechanical and electrical processes: Influence of operating conditions. Electrochimica Acta, 2020, 353, 136462.	2.6	17
13	Scale-up of electrokinetic process for dredged sediments remediation. Electrochimica Acta, 2020, 352, 136488.	2.6	20
14	Enhanced electrokinetic remediation of multi-contaminated dredged sediments and induced effect on their toxicity. Chemosphere, 2019, 228, 744-755.	4.2	48
15	Concentrations and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) in Agricultural, Urban/Residential, and Industrial Soils, East of Oran (Northwest Algeria). Polycyclic Aromatic Compounds, 2019, 39, 299-310.	1.4	18
16	Influence of a mixture of metals on PAHs biodegradation processes in soils. Science of the Total Environment, 2018, 628-629, 150-158.	3.9	23
17	Experimental Designs for Optimizing Multi-residual Microwave-assisted Extraction and Chromatographic Analysis of Oxygenated (Hydroxylated, Quinones) Metabolites of PAHs in Sediments. Chromatographia, 2018, 81, 1401-1412.	0.7	12
18	Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. Journal of Hazardous Materials, 2018, 359, 500-509.	6.5	81

#	Article	IF	CITATIONS
19	Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil. Environmental Pollution, 2017, 225, 663-673.	3.7	22
20	Influence of the vegetative cover on the fate of trace metals in retention systems simulating roadside infiltration swales. Science of the Total Environment, 2017, 580, 482-490.	3.9	21
21	Application of a crustacean bioassay to evaluate a multi-contaminated (metal, PAH, PCB) harbor sediment before and after electrokinetic remediation using eco-friendly enhancing agents. Science of the Total Environment, 2017, 607-608, 944-953.	3.9	39
22	Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area. Science of the Total Environment, 2016, 566-567, 113-121.	3.9	61
23	Alternative techniques to HPCD to evaluate the bioaccessible fraction of soil-associated PAHs and correlation to biodegradation efficiency. Journal of Hazardous Materials, 2016, 314, 220-229.	6.5	18
24	Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere, 2015, 125, 1-8.	4.2	117
25	Assessment of PAH dissipation processes in large-scale outdoor mesocosms simulating vegetated road-side swales. Science of the Total Environment, 2015, 520, 146-153.	3.9	23
26	Evaluation of the PAH and water-extractable phenols content in used cross ties from the French rail network. Chemosphere, 2014, 111, 1-6.	4.2	10
27	Low impact of phenanthrene dissipation on the bacterial community in grassland soil. Environmental Science and Pollution Research, 2014, 21, 2977-2987.	2.7	16
28	Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from a sediment using mixed enhancing agents. International Journal of Environmental Science and Technology, 2014, 11, 1801-1816.	1.8	41
29	Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils. Environmental Science and Pollution Research, 2014, 21, 8133-45.	2.7	42
30	Occurrence of 1,1′-dimethyl-4,4′-bipyridinium (Paraquat) in irrigated soil of the Lake Chad Basin, Niger. Environmental Science and Pollution Research, 2014, 21, 10601-10613.	2.7	14
31	Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants. Journal of Hazardous Materials, 2013, 261, 593-601.	6.5	34
32	GammaProteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils. Environmental Pollution, 2013, 180, 199-205.	3.7	80
33	Molecularly imprinted polymer-liquid chromatography/fluorescence for the selective clean-up of hydroxylated polycyclic aromatic hydrocarbons in soils. Analytical Methods, 2013, 5, 6297.	1.3	21
34	Analytical Methodologies for the Control of Particle-Phase Polycyclic Aromatic Compounds from Diesel Engine Exhaust. , 2013, , .		3
35	Heavy metals removal from dredged sediments using electro kinetics. E3S Web of Conferences, 2013, 1, 01004.	0.2	2
36	Novel Application of Cyclolipopeptide Amphisin: Feasibility Study as Additive to Remediate Polycyclic Aromatic Hydrocarbon (PAH) Contaminated Sediments. International Journal of Molecular Sciences, 2011, 12, 1787-1806.	1.8	17

#	Article	IF	CITATIONS
37	A new analytical methodology for a fast evaluation of semi-volatile polycyclic aromatic hydrocarbons in the vapor phase downstream of a diesel engine particulate filter. Journal of Chromatography A, 2011, 1218, 981-989.	1.8	9
38	Both Cycloclasticus spp. and Pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiology Ecology, 2010, 71, 137-147.	1.3	60
39	Comparison of hot Soxhlet and accelerated solvent extractions with microwave and supercritical fluid extractions for the determination of polycyclic aromatic hydrocarbons and nitrated derivatives strongly adsorbed on soot collected inside a diesel particulate filter. Talanta, 2010, 82, 227-236.	2.9	34
40	Porous silicon based microdevice for reversed phase liquid chromatography. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1777-1781.	0.8	5
41	Optimisation of supercritical fluid extraction of polycyclic aromatic hydrocarbons and their nitrated derivatives adsorbed on highly sorptive diesel particulate matter. Analytica Chimica Acta, 2009, 651, 48-56.	2.6	14
42	Optimisation of the extraction of polycyclic aromatic hydrocarbons and their nitrated derivatives from diesel particulate matter using microwave-assisted extraction. Analytical and Bioanalytical Chemistry, 2008, 390, 389-398.	1.9	36
43	Quantification of volatile PAHs present at trace levels in air flow by aqueous trapping—SPE and HPLC analysis with fluorimetric detection. Talanta, 2007, 71, 1825-1833.	2.9	30
44	Self-Desorption of Mixtures of Anionic and Nonionic Surfactants from a Silica/Water Interface. Langmuir, 2001, 17, 3858-3862.	1.6	8