William A Maltese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1755905/publications.pdf

Version: 2024-02-01

279798 434195 1,993 33 23 31 citations h-index g-index papers 33 33 33 2260 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigating the Potential to Deliver and Maintain Plasma and Brain Levels of a Novel Practically Insoluble Methuosis Inducing Anticancer Agent 5-Methoxy MOMIPP Through an Injectable InÂSitu Forming Thermoresponsive Hydrogel Formulation. Journal of Pharmaceutical Sciences, 2020, 109, 2719-2728.	3.3	4
2	Dysregulation of Macropinocytosis Processes in Glioblastomas May Be Exploited to Increase Intracellular Anti-Cancer Drug Levels: The Example of Temozolomide. Cancers, 2019, 11, 411.	3.7	24
3	6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chalcone, inhibits glioblastoma growth and viability. Cancer Chemotherapy and Pharmacology, 2019, 83, 237-254.	2.3	13
4	The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer, 2019, 19, 77.	2.6	32
5	Vacuole-inducing compounds that disrupt endolysosomal trafficking stimulate production of exosomes by glioblastoma cells. Molecular and Cellular Biochemistry, 2018, 439, 1-9.	3.1	17
6	KRAS mutant allele-specific expression knockdown in pancreatic cancer model with systemically delivered bi-shRNA KRAS lipoplex. PLoS ONE, 2018, 13, e0193644.	2.5	10
7	Receptor-Mediated Attachment and Uptake of Hyaluronan Conjugates by Breast Cancer Cells. Molecular Pharmaceutics, 2017, 14, 3968-3977.	4.6	17
8	Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. Cell Biology and Toxicology, 2017, 33, 263-282.	5.3	28
9	Synthesis and biological evaluation of isomeric methoxy substitutions on anti-cancer indolyl-pyridinyl-propenones: Effects on potency and mode of activity. European Journal of Medicinal Chemistry, 2016, 122, 79-91.	5.5	27
10	Synthesis and Biological Evaluation of Indolyl-Pyridinyl-Propenones Having Either Methuosis or Microtubule Disruption Activity. Journal of Medicinal Chemistry, 2015, 58, 2489-2512.	6.4	36
11	Hyaluronan drug delivery systems are promising for cancer therapy because of their selective attachment, enhanced uptake, and superior efficacy. Biomedical Engineering Letters, 2015, 5, 109-123.	4.1	9
12	Non-apoptotic cell death associated with perturbations of macropinocytosis. Frontiers in Physiology, 2015, 6, 38.	2.8	61
13	Differential Induction of Cytoplasmic Vacuolization and Methuosis by Novel 2-Indolyl-Substituted Pyridinylpropenones. ACS Medicinal Chemistry Letters, 2014, 5, 73-77.	2.8	37
14	Methuosis. American Journal of Pathology, 2014, 184, 1630-1642.	3.8	167
15	Synthesis and Evaluation of Indole-Based Chalcones as Inducers of Methuosis, a Novel Type of Nonapoptotic Cell Death. Journal of Medicinal Chemistry, 2012, 55, 1940-1956.	6.4	143
16	Death pathways triggered by activated Ras in cancer cells. Frontiers in Bioscience - Landmark, 2011, 16, 1693.	3.0	53
17	A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells. Molecular Cancer, 2011, 10, 69.	19.2	136
18	Induction of Nonapoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6. Molecular Cancer Research, 2010, 8, 1358-1374.	3.4	81

#	Article	IF	CITATIONS
19	Active Ras Triggers Death in Glioblastoma Cells through Hyperstimulation of Macropinocytosis. Molecular Cancer Research, 2008, 6, 965-977.	3.4	169
20	Activated Ras induces cytoplasmic vacuolation and non-apoptotic death in glioblastoma cells via novel effector pathways. Cellular Signalling, 2007, 19, 1034-1043.	3.6	34
21	Gene silencing reveals a specific function of hVps34 phosphatidylinositol 3-kinase in late versus early endosomes. Journal of Cell Science, 2006, 119 , $1219-1232$.	2.0	99
22	Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. Journal of Cell Science, 2006, 119, 259-270.	2.0	305
23	Mechanisms of Hâ€Rasâ€induced autophagic cell death in human glioblastoma. FASEB Journal, 2006, 20, A981.	0.5	0
24	Endomembrane association of activated Hâ€Ras, but not Kâ€Ras, causes autophagic cell death in human glioblastoma. FASEB Journal, 2006, 20, A982.	0.5	0
25	Mutant Rab24 GTPase is targeted to nuclear inclusions. BMC Cell Biology, 2002, 3, 25.	3.0	13
26	Retention of the Alzheimer's Amyloid Precursor Fragment C99 in the Endoplasmic Reticulum Prevents Formation of Amyloid \hat{l}^2 -Peptide. Journal of Biological Chemistry, 2001, 276, 20267-20279.	3.4	51
27	Rab24 Is an Atypical Member of the Rab GTPase Family. Journal of Biological Chemistry, 2000, 275, 3848-3856.	3.4	51
28	Differential Effects of a Rab6 Mutant on Secretory Versus Amyloidogenic Processing of Alzheimer's β-Amyloid Precursor Protein. Journal of Biological Chemistry, 1996, 271, 1343-1348.	3.4	58
29	Association of Rab1B with GDP-dissociation Inhibitor (GDI) Is Required for Recycling but Not Initial Membrane Targeting of the Rab Protein. Journal of Biological Chemistry, 1996, 271, 10932-10940.	3.4	70
30	The Ras-related GTP-binding Protein, Rab1B, Regulates Early Steps in Exocytic Transport and Processing of β-Amyloid Precursor Protein. Journal of Biological Chemistry, 1995, 270, 10982-10989.	3.4	60
31	Enzymes of Fatty Acid ?-Oxidation in Developing Brain. Journal of Neurochemistry, 1988, 51, 339-344.	3.9	47
32	Isoprenylated proteins in cultured cells: Subcellular distribution and changes related to altered morphology and growth arrest induced by mevalonate deprivation. Journal of Cellular Physiology, 1987, 133, 471-481.	4.1	133
33	Cholesterol and phospholipids in cultured skin fibroblasts from patients with dystonia. Annals of Neurology, 1984, 16, 250-252.	5.3	8