
## Min-Hui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/175518/publications.pdf Version: 2024-02-01



MIN-HIIL

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stimuli-responsive polymer vesicles. Soft Matter, 2009, 5, 927.                                                                                                                                       | 2.7  | 451       |
| 2  | Micro-Actuators:Â When Artificial Muscles Made of Nematic Liquid Crystal Elastomers Meet Soft<br>Lithography. Journal of the American Chemical Society, 2006, 128, 1088-1089.                         | 13.7 | 329       |
| 3  | Artificial muscles based on liquid crystal elastomers. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2006, 364, 2763-2777.                                | 3.4  | 234       |
| 4  | Self-Assembly of Linearâ `'Dendritic Diblock Copolymers: From Nanofibers to Polymersomes. Journal of the American Chemical Society, 2010, 132, 3762-3769.                                             | 13.7 | 192       |
| 5  | Bursting of sensitive polymersomes induced by curling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7294-7298.                                         | 7.1  | 175       |
| 6  | Fully Biobased Vitrimers from Glycyrrhizic Acid and Soybean Oil for Self-Healing, Shape Memory,<br>Weldable, and Recyclable Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 6479-6487. | 6.7  | 134       |
| 7  | Reduction-Responsive Cholesterol-Based Block Copolymer Vesicles for Drug Delivery.<br>Biomacromolecules, 2014, 15, 2206-2217.                                                                         | 5.4  | 108       |
| 8  | Fluorescent Polymersomes with Aggregation-Induced Emission. ACS Nano, 2018, 12, 4025-4035.                                                                                                            | 14.6 | 100       |
| 9  | Smectic polymer vesicles. Soft Matter, 2009, 5, 3446.                                                                                                                                                 | 2.7  | 90        |
| 10 | Self-Assembly of PEG- <i>b</i> -Liquid Crystal Polymer:  The Role of Smectic Order in the Formation of Nanofibers. Macromolecules, 2007, 40, 5625-5627.                                               | 4.8  | 79        |
| 11 | Morphology of nematic and smectic vesicles. Proceedings of the National Academy of Sciences of the<br>United States of America, 2012, 109, 5202-5206.                                                 | 7.1  | 76        |
| 12 | Smectic polymer micellar aggregates with temperature-controlled morphologies. Soft Matter, 2011, 7, 7395.                                                                                             | 2.7  | 74        |
| 13 | Novel Liquid Crystalline Block Copolymers by ATRP and ROMP. Macromolecules, 2003, 36, 2284-2292.                                                                                                      | 4.8  | 72        |
| 14 | CO <sub>2</sub> â€Activated Reversible Transition between Polymersomes and Micelles with AIE<br>Fluorescence. Angewandte Chemie - International Edition, 2019, 58, 10260-10265.                       | 13.8 | 66        |
| 15 | Polymer vesicles formed by amphiphilic diblock copolymers containing a thermotropic liquid crystalline polymer block. Chemical Communications, 2005, , 4345.                                          | 4.1  | 61        |
| 16 | Synthesis via RAFT of Amphiphilic Block Copolymers with Liquid-Crystalline Hydrophobic Block and<br>Their Self-Assembly in Water. Macromolecules, 2009, 42, 8688-8696.                                | 4.8  | 59        |
| 17 | Light-responsive wires from side-on liquid crystalline azo polymers. Liquid Crystals, 2009, 36,<br>1023-1029.                                                                                         | 2.2  | 56        |
| 18 | Self-assembly of amphiphilic liquid crystal block copolymers containing a cholesteryl mesogen:<br>Effects of block ratio and solvent. Polymer, 2011, 52, 2565-2575.                                   | 3.8  | 56        |

Min-Hui Li

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Formation of Polymer Vesicles by Liquid Crystal Amphiphilic Block Copolymers. Langmuir, 2006, 22,<br>7907-7911.                                                                                                           | 3.5  | 55        |
| 20 | Self-assembly of liquid crystal block copolymer PEG-b-smectic polymer in pure state and in dilute aqueous solution. Faraday Discussions, 2009, 143, 235.                                                                  | 3.2  | 55        |
| 21 | Azobenzene-Containing Liquid Crystal Triblock Copolymers: Synthesis, Characterization, and<br>Self-Assembly Behavior. Macromolecules, 2008, 41, 2459-2466.                                                                | 4.8  | 51        |
| 22 | Poly(ε-caprolactone)- <i>block</i> -polysarcosine by Ring-Opening Polymerization of Sarcosine<br><i>N</i> -Thiocarboxyanhydride: Synthesis and Thermoresponsive Self-Assembly. Biomacromolecules,<br>2015, 16, 3265-3274. | 5.4  | 48        |
| 23 | Liquid crystal gelators with photo-responsive and AlE properties. Materials Chemistry Frontiers, 2018, 2, 2245-2253.                                                                                                      | 5.9  | 46        |
| 24 | An azobenzene-containing side-on liquid crystal polymer. Liquid Crystals, 2000, 27, 1497-1502.                                                                                                                            | 2.2  | 45        |
| 25 | Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. Nanoscale, 2018, 10, 6781-6800.                                                              | 5.6  | 45        |
| 26 | Cancer cell discrimination and dynamic viability monitoring through wash-free bioimaging using AlEgens. Chemical Science, 2020, 11, 7676-7684.                                                                            | 7.4  | 45        |
| 27 | α-Amino acid N-thiocarboxyanhydrides: A novel synthetic approach toward poly(α-amino acid)s. European<br>Polymer Journal, 2018, 109, 26-42.                                                                               | 5.4  | 41        |
| 28 | Oxidation-Sensitive Polymersomes Based on Amphiphilic Diblock Copolypeptoids. Biomacromolecules, 2019, 20, 3435-3444.                                                                                                     | 5.4  | 40        |
| 29 | Amphiphilic Poly(ethylene oxide)- <i>block</i> -poly(butadiene- <i>graft</i> -liquid crystal) Copolymers:<br>Synthesis and Self-Assembly in Water. Macromolecules, 2010, 43, 10442-10451.                                 | 4.8  | 33        |
| 30 | Natural glycyrrhizic acid: improving stress relaxation rate and glass transition temperature simultaneously in epoxy vitrimers. Green Chemistry, 2021, 23, 5647-5655.                                                     | 9.0  | 33        |
| 31 | Fluorescent polymer cubosomes and hexosomes with aggregation-induced emission. Chemical Science, 2021, 12, 5495-5504.                                                                                                     | 7.4  | 31        |
| 32 | Liquid-Crystalline Polymethacrylates by Atom-Transfer Radical Polymerization at Ambient Temperature.<br>Macromolecular Chemistry and Physics, 2002, 203, 619-626.                                                         | 2.2  | 29        |
| 33 | Deep-Red Aggregation-Induced Emission Luminogen Based on Dithiofuvalene-Fused Benzothiadiazole<br>for Lipid Droplet-Specific Imaging. , 2022, 4, 159-164.                                                                 |      | 28        |
| 34 | Light-Gated Nano-Porous Capsules from Stereoisomer-Directed Self-Assemblies. ACS Nano, 2021, 15,<br>884-893.                                                                                                              | 14.6 | 27        |
| 35 | Self-Assembly of Amphiphilic Liquid Crystal Polymers Obtained from a Cyclopropane-1,1-Dicarboxylate<br>Bearing a Cholesteryl Mesogen. Langmuir, 2012, 28, 11215-11224.                                                    | 3.5  | 25        |
| 36 | Photosensitization of polymer vesicles: a multistep chemical process deciphered by micropipette manipulation. Soft Matter, 2010, 6, 4863.                                                                                 | 2.7  | 23        |

Mın-Hui Li

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Unusual light-driven amplification through unexpected regioselective photogeneration of five-membered azaheterocyclic AIEgen. Chemical Science, 2021, 12, 709-717.                                                                      | 7.4  | 23        |
| 38 | AIE Fluorescent Gelators with Thermoâ€, Mechanoâ€, and Vapochromic Properties. Chemistry - an Asian<br>Journal, 2019, 14, 781-788.                                                                                                      | 3.3  | 22        |
| 39 | Transition from smectic nanofibers to smectic vesicles in the self-assemblies of PEG-b-liquid crystal polycarbonates. Polymer Chemistry, 2017, 8, 4776-4780.                                                                            | 3.9  | 21        |
| 40 | Recent Progress in Fluorescent Vesicles with Aggregation-induced Emission. Chinese Journal of Polymer Science (English Edition), 2019, 37, 352-371.                                                                                     | 3.8  | 21        |
| 41 | Polymersomes with aggregation-induced emission based on amphiphilic block copolypeptoids.<br>Chemical Communications, 2019, 55, 13530-13533.                                                                                            | 4.1  | 21        |
| 42 | Thermo-mechanical and photo-luminescence properties of micro-actuators made of liquid crystal<br>elastomers with cyano-oligo( <i>p</i> -phenylene vinylene) crosslinking bridges. Materials Chemistry<br>Frontiers, 2019, 3, 2499-2506. | 5.9  | 19        |
| 43 | Synthesis and self-assembly of poly(ethylene glycol)-block-poly(N-3-(methylthio)propyl glycine) and their oxidation-sensitive polymersomes. Chinese Chemical Letters, 2020, 31, 1931-1935.                                              | 9.0  | 19        |
| 44 | Recent Progress in Polymer Cubosomes and Hexosomes. Macromolecular Rapid Communications, 2021,<br>42, e2100194.                                                                                                                         | 3.9  | 19        |
| 45 | Liquid crystalline polymer vesicles: thermotropic phases in lyotropic structures. Liquid Crystals, 2014, 41, 368-384.                                                                                                                   | 2.2  | 18        |
| 46 | Direct preparation of nematic liquid crystalline elastomer actuators by electron beam irradiation polymerization. Journal of Materials Chemistry, 2012, 22, 4669.                                                                       | 6.7  | 14        |
| 47 | Color Modulation in <i>Morpho</i> Butterfly Wings Using Liquid Crystalline Elastomers. Advanced<br>Intelligent Systems, 2020, 2, 2000035.                                                                                               | 6.1  | 13        |
| 48 | Customizable Sophisticated Three-Dimensional Shape Changes of Large-Size Liquid Crystal Elastomer<br>Actuators. ACS Applied Materials & Interfaces, 2021, 13, 54439-54446.                                                              | 8.0  | 13        |
| 49 | CO 2 â€Activated Reversible Transition between Polymersomes and Micelles with AlE Fluorescence.<br>Angewandte Chemie, 2019, 131, 10366-10371.                                                                                           | 2.0  | 12        |
| 50 | A simple PVA/Cu(OAc)2 thermogel with an inherent near-infrared light response and its applications in smart windows and photoresistors. Journal of Materials Chemistry A, 2020, 8, 17800-17807.                                         | 10.3 | 10        |
| 51 | Large-Size Honeycomb-Shaped and Iris-Like Liquid Crystal Elastomer Actuators. CCS Chemistry, 2022, 4,<br>847-854.                                                                                                                       | 7.8  | 10        |
| 52 | Temperature tunable optical gratings in nematic elastomer. Applied Physics A: Materials Science and Processing, 2010, 98, 119-122.                                                                                                      | 2.3  | 9         |
| 53 | Trans/cis-stereoisomers of triterpenoid-substituted tetraphenylethene: aggregation-induced emission, aggregate morphology, and mechano-chromism. Nanoscale, 2021, 13, 15257-15266.                                                      | 5.6  | 9         |
| 54 | Amphiphilic polymers for aggregation-induced emission at air/liquid interfaces. Journal of Colloid and Interface Science, 2021, 596, 324-331.                                                                                           | 9.4  | 8         |

Min-Hui Li

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Morphology study of a series of azobenzene-containing side-on liquid crystalline triblock copolymers. Chinese Journal of Polymer Science (English Edition), 2012, 30, 258-268.                | 3.8 | 6         |
| 56 | Nanoporous Vesicular Membranes of Amphiphilic Polymers Containing <i>Trans</i> / <i>Cis</i> lsomers. CCS Chemistry, 2022, 4, 2651-2661.                                                       | 7.8 | 6         |
| 57 | Tough Polymeric Hydrogels Formed by Natural Glycyrrhetinic Acid-Tailored Host–Guest<br>Macro-Cross-Linking toward Biocompatible Materials. ACS Applied Polymer Materials, 2019, 1, 2577-2581. | 4.4 | 5         |
| 58 | Polymersomes with a smectic liquid crystal structure and AIE fluorescence. Polymer Chemistry, 2022, 13, 1107-1115.                                                                            | 3.9 | 5         |
| 59 | Plasmaâ€Induced Polymerizations: A New Synthetic Entry in Liquid Crystal Elastomer Actuators.<br>Macromolecular Rapid Communications, 2020, 41, e2000385.                                     | 3.9 | 2         |
| 60 | Fabrication of chiral polydiacetylene nanotubes <i>via</i> supramolecular gelation of a triterpenoid-derived amphiphile. Materials Advances, 2021, 2, 3014-3019.                              | 5.4 | 2         |
| 61 | Biobased thermosensitive polyrotaxanes constructed by polymerization of cyclodextrin-triterpenoid inclusion complexes. Polymer Chemistry, 2020, 11, 6492-6498.                                | 3.9 | 1         |