List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1754979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of edible solid lipid nanoparticle from beeswax/propolis wax by spontaneous emulsification: Optimization, characterization and stability. Food Chemistry, 2022, 387, 132934.	4.2	6
2	Emulsion gels and oil-filled aerogels as curcumin carriers: Nanostructural characterization of gastrointestinal digestion products. Food Chemistry, 2022, 387, 132877.	4.2	10
3	Nanoemulsion design for the delivery of omega-3 fatty acids. , 2021, , 295-319.		1
4	Influence of lipid nanoparticle physical state on \hat{l}^2 -carotene stability kinetics under different environmental conditions. Food and Function, 2021, 12, 840-851.	2.1	5
5	Formation and Stabilization of W1/O/W2 Emulsions with Gelled Lipid Phases. Molecules, 2021, 26, 312.	1.7	5
6	Incorporation of antimicrobial nanoemulsions into complex foods: A case study in an apple juice-based beverage. LWT - Food Science and Technology, 2021, 141, 110926.	2.5	9
7	Interfacial activity of phenolic-rich extracts from avocado fruit waste: Influence on the colloidal and oxidative stability of emulsions and nanoemulsions. Innovative Food Science and Emerging Technologies, 2021, 69, 102665.	2.7	14
8	Lipid Digestibility and Polyphenols Bioaccessibility of Oil-in-Water Emulsions Containing Avocado Peel and Seed Extracts as Affected by the Presence of Low Methoxyl Pectin. Foods, 2021, 10, 2193.	1.9	6
9	The lipid type affects the in vitro digestibility and β-carotene bioaccessibility of liquid or solid lipid nanoparticles. Food Chemistry, 2020, 311, 126024.	4.2	36
10	Antimicrobial Kinetics of Nanoemulsions Stabilized with Protein:Pectin Electrostatic Complexes. Food and Bioprocess Technology, 2020, 13, 1893-1907.	2.6	9
11	Protein/Polysaccharide Complexes to Stabilize Decane-in-Water Nanoemulsions. Food Biophysics, 2020, 15, 335-345.	1.4	16
12	Comparative study on lipid digestion and carotenoid bioaccessibility of emulsions, nanoemulsions and vegetable-based in situ emulsions. Food Hydrocolloids, 2019, 87, 119-128.	5.6	47
13	<i>In vitro</i> digestibility and release of a mango peel extract encapsulated within water-in-oil-in-water (W ₁ /O/W ₂) emulsions containing sodium carboxymethyl cellulose. Food and Function, 2019, 10, 6110-6120.	2.1	23
14	Factors affecting the formation of highly concentrated emulsions and nanoemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123577.	2.3	16
15	From single to multiresponse modelling of food digestion kinetics: The case of lipid digestion. Journal of Food Engineering, 2019, 260, 40-49.	2.7	19
16	Lipid nanoparticles with fats or oils containing β-carotene: Storage stability and in vitro digestibility kinetics. Food Chemistry, 2019, 278, 396-405.	4.2	46
17	Formation of Double (W1/O/W2) Emulsions as Carriers of Hydrophilic and Lipophilic Active Compounds. Food and Bioprocess Technology, 2019, 12, 422-435.	2.6	20
18	Process-induced water-soluble biopolymers from broccoli and tomato purées: Their molecular structure in relation to their emulsion stabilizing capacity. Food Hydrocolloids, 2018, 81, 312-327.	5.6	12

#	Article	IF	CITATIONS
19	Influence of essential oils and pectin on nanoemulsion formulation: AÂternary phase experimental approach. Food Hydrocolloids, 2018, 81, 209-219.	5.6	46
20	InÂvitro digestibility kinetics of oil-in-water emulsions structured by water-soluble pectin-protein mixtures from vegetable purées. Food Hydrocolloids, 2018, 80, 231-244.	5.6	14
21	Kinetic approach to study the relation between in vitro lipid digestion and carotenoid bioaccessibility in emulsions with different oil unsaturation degree. Journal of Functional Foods, 2018, 41, 135-147.	1.6	91
22	Interactions between citrus pectin and Zn2+ or Ca2+ and associated inÂvitro Zn2+ bioaccessibility as affected by degree of methylesterification and blockiness. Food Hydrocolloids, 2018, 79, 319-330.	5.6	38
23	Pectin influences the kinetics of in vitro lipid digestion in oil-in-water emulsions. Food Chemistry, 2018, 262, 150-161.	4.2	50
24	Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions. Food Chemistry, 2018, 241, 86-96.	4.2	46
25	Emulsion stability during gastrointestinal conditions effects lipid digestion kinetics. Food Chemistry, 2018, 246, 179-191.	4.2	87
26	Emulsion-Based Nanostructures for the Delivery of Active Ingredients in Foods. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	23
27	Beverage Emulsions: Key Aspects of Their Formulation and Physicochemical Stability. Beverages, 2018, 4, 70.	1.3	22
28	Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions. Food Hydrocolloids, 2018, 85, 144-157.	5.6	116
29	Effects of High Intensity Pulsed Electric Fields or Thermal Pasteurization and Refrigerated Storage on Antioxidant Compounds of Fruit Juice-Milk Beverages. Part I: Phenolic Acids and Flavonoids. Journal of Food Processing and Preservation, 2017, 41, e12912.	0.9	6
30	Edible Nanoemulsions as Carriers of Active Ingredients: A Review. Annual Review of Food Science and Technology, 2017, 8, 439-466.	5.1	207
31	The influence of lipid droplet size on the oral bioavailability of vitamin D ₂ encapsulated in emulsions: an in vitro and in vivo study. Food and Function, 2017, 8, 767-777.	2.1	54
32	Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control, 2017, 77, 131-138.	2.8	98
33	Mineral and fatty acid profile of high intensity pulsed electric fields or thermally treated fruit juice-milk beverages stored under refrigeration. Food Control, 2017, 80, 236-243.	2.8	14
34	Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Food Chemistry, 2017, 229, 653-662.	4.2	168
35	Layer-by-Layer Assembly of Food-Grade Alginate/Chitosan Nanolaminates: Formation and Physicochemical Characterization. Food Biophysics, 2017, 12, 299-308.	1.4	10
36	Effects of High Intensity Pulsed Electric Fields or Thermal Treatments and Refrigerated Storage on Antioxidant Compounds of Fruit Juice-Milk Beverages. Part II: Carotenoids. Journal of Food Processing and Preservation, 2017, 41, e13143.	0.9	6

#	Article	IF	CITATIONS
37	Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials, 2016, 6, 17.	1.9	101
38	Improvement of β-Carotene Bioaccessibility from Dietary Supplements Using Excipient Nanoemulsions. Journal of Agricultural and Food Chemistry, 2016, 64, 4639-4647.	2.4	37
39	Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: Influence of lipid droplet size. Food Chemistry, 2016, 210, 295-304.	4.2	94
40	<i>In vitro</i> β arotene Bioaccessibility and Lipid Digestion in Emulsions: Influence of Pectin Type and Degree of Methylâ€Esterification. Journal of Food Science, 2016, 81, C2327-C2336.	1.5	32
41	Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: Antioxidant effects of alginate. Food Hydrocolloids, 2016, 52, 690-698.	5.6	68
42	Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 2016, 52, 438-446.	5.6	166
43	Influence of Nanoemulsion Addition on the Stability of Conventional Emulsions. Food Biophysics, 2016, 11, 1-9.	1.4	26
44	Enhancing Nutraceutical Performance Using Excipient Foods: Designing Food Structures and Compositions to Increase Bioavailability. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 824-847.	5.9	108
45	Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 2015, 47, 168-177.	5.6	471
46	In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems: Impact of lipid carrier type. Journal of Functional Foods, 2015, 17, 293-304.	1.6	103
47	Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 2015, 105, 8-16.	2.9	282
48	Modulating Biopolymer Electrical Charge to Optimize the Assembly of Edible Multilayer Nanofilms by the Layer-by-Layer Technique. Biomacromolecules, 2015, 16, 2895-2903.	2.6	35
49	Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 2015, 43, 547-556.	5.6	299
50	Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10. Food Chemistry, 2014, 156, 117-122.	4.2	133
51	Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control, 2014, 37, 292-297.	2.8	138
52	Formulation of Antimicrobial Edible Nanoemulsions with Pseudo-Ternary Phase Experimental Design. Food and Bioprocess Technology, 2014, 7, 3022-3032.	2.6	23
53	Physicochemical Characterization of Lemongrass Essential Oil–Alginate Nanoemulsions: Effect of Ultrasound Processing Parameters. Food and Bioprocess Technology, 2013, 6, 2439-2446. 	2.6	81
54	Modulating Î ² -carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry, 2013, 139, 878-884.	4.2	197

#	Article	IF	CITATIONS
55	Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 2013, 141, 1472-1480.	4.2	489
56	Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 2013, 30, 401-407.	5.6	180
57	High intensity pulsed electric fields or thermal treatments effects on the amino acid profile of a fruit juice-soymilk beverage during refrigeration storage. Innovative Food Science and Emerging Technologies, 2012, 16, 47-53.	2.7	10
58	Changes in Water-Soluble Vitamins and Antioxidant Capacity of Fruit Juice–Milk Beverages As Affected by High-Intensity Pulsed Electric Fields (HIPEF) or Heat during Chilled Storage. Journal of Agricultural and Food Chemistry, 2011, 59, 10034-10043.	2.4	29
59	Microbial and enzymatic stability of fruit juice-milk beverages treated by high intensity pulsed electric fields or heat during refrigerated storage. Food Control, 2011, 22, 1639-1646.	2.8	45
60	Impact of high intensity pulsed electric fields or heat treatments on the fatty acid and mineral profiles of a fruit juice–soymilk beverage during storage. Food Control, 2011, 22, 1975-1983.	2.8	30
61	Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice–soymilk beverages during refrigerated storage. Food Chemistry, 2011, 129, 982-990.	4.2	98
62	Isoflavone profile of a high intensity pulsed electric field or thermally treated fruit juice-soymilk beverage stored under refrigeration. Innovative Food Science and Emerging Technologies, 2010, 11, 604-610.	2.7	38
63	Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice–soymilk beverage in chilled storage. LWT - Food Science and Technology, 2010, 43, 872-881.	2.5	106