
Hiroyuki Nonogaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1754815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repression of <i>AUXIN RESPONSE FACTOR10</i> by microRNA160 is critical for seed germination and postâ€germination stages. Plant Journal, 2007, 52, 133-146.	5.7	548
2	Germination—Still a mystery. Plant Science, 2010, 179, 574-581.	3.6	529
3	Seed dormancy and germinationââ,¬â€emerging mechanisms and new hypotheses. Frontiers in Plant Science, 2014, 5, 233.	3.6	238
4	A Germination-Specific Endo-β-Mannanase Gene Is Expressed in the Micropylar Endosperm Cap of Tomato Seeds. Plant Physiology, 2000, 123, 1235-1246.	4.8	181
5	The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. Plant Journal, 2005, 44, 960-971.	5.7	161
6	A Novel Endo-β-Mannanase Gene in Tomato LeMAN5 Is Associated with Anther and Pollen Development. Plant Physiology, 2004, 134, 1080-1087.	4.8	156
7	Activation and regulation of primary metabolism during seed germination. Seed Science Research, 2014, 24, 1-15.	1.7	155
8	Expression of a GALACTINOL SYNTHASE Gene in Tomato Seeds Is Up-Regulated before Maturation Desiccation and Again after Imbibition whenever Radicle Protrusion Is Prevented. Plant Physiology, 2003, 131, 1347-1359.	4.8	144
9	Induction of 9- <i>cis</i> -epoxycarotenoid dioxygenase in <i>Arabidopsis thaliana</i> seeds enhances seed dormancy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17225-17229.	7.1	131
10	A gibberellinâ€regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. Journal of Experimental Botany, 2002, 53, 215-223.	4.8	123
11	Seed Biology in the 21st Century: Perspectives and New Directions. Plant and Cell Physiology, 2012, 53, 1-4.	3.1	118
12	Seed germination and dormancy: The classic story, new puzzles, and evolution. Journal of Integrative Plant Biology, 2019, 61, 541-563.	8.5	109
13	Seed Biology Updates – Highlights and New Discoveries in Seed Dormancy and Germination Research. Frontiers in Plant Science, 2017, 8, 524.	3.6	102
14	Seed Germination-The Biochemical and Molecular Mechanisms. Breeding Science, 2006, 56, 93-105.	1.9	91
15	microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress. Journal of Experimental Botany, 2010, 61, 2229-2234.	4.8	87
16	Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. Plant Journal, 2005, 41, 936-944.	5.7	86
17	Isolation and characterization of a wound inducible phenylalanine ammonia-lyase gene (LsPAL1) from Romaine lettuce leaves. Physiologia Plantarum, 2004, 121, 429-438.	5.2	67
18	Heat shock treatments delay the increase in wound-induced phenylalanine ammonia-lyase activity by altering its expression, not its induction in Romaine lettuce (Lactuca sativa) tissue. Physiologia Plantarum, 2005, 123, 82-91.	5.2	64

Ηιγογικι Νονοςακι

#	Article	IF	CITATIONS
19	MicroRNA Gene Regulation Cascades During Early Stages of Plant Development. Plant and Cell Physiology, 2010, 51, 1840-1846.	3.1	64
20	The regulation of post-germinative transition from the cotyledon- to vegetative-leaf stages by microRNA-targeted <i>SQUAMOSA PROMOTER-BINDING PROTEIN LIKE13</i> in <i>Arabidopsis</i> . Seed Science Research, 2010, 20, 89-96.	1.7	61
21	Amplification of <scp>ABA</scp> biosynthesis and signaling through a positive feedback mechanism in seeds. Plant Journal, 2014, 78, 527-539.	5.7	61
22	Galactomannan hydrolyzing activity develops during priming in the micropylar endosperm tip of tomato seeds. Physiologia Plantarum, 1992, 85, 167-172.	5.2	56
23	Development of galactomannan-hydrolyzing activity in the micropylar endosperm tip of tomato seed prior to germination. Physiologia Plantarum, 1995, 94, 105-109.	5.2	55
24	The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in <i>Arabidopsis</i> . Seed Science Research, 2010, 20, 79-87.	1.7	55
25	Modeling of Seed Dormancy. , 0, , 72-112.		53
26	Definitions and Hypotheses of Seed Dormancy. , 0, , 50-71.		53
27	Seed Coat Development and Dormancy. , 0, , 25-49.		50
28	The Endo-β-Mannanase gene families in Arabidopsis, rice, and poplar. Functional and Integrative Genomics, 2006, 7, 1-16.	3.5	47
29	Mechanisms and Genes Involved in GerminationSensu Stricto. , 0, , 264-304.		46
30	Endo-beta-mannanases in the endosperm of germinated tomato seeds. Physiologia Plantarum, 1995, 94, 328-334.	5.2	39
31	Mechanisms of hormonal regulation of endosperm capâ€specific gene expression in tomato seeds. Plant Journal, 2012, 71, 575-586.	5.7	37
32	Simple purification of small RNAs from seeds and efficient detection of multiple microRNAs expressed in Arabidopsis thaliana and tomato (Lycopersicon esculentum) seeds. Seed Science Research, 2005, 15, 319-328.	1.7	35
33	Regulation of ABA and GA Levels During Seed Development and Germination inArabidopsis. , 0, , 224-247.		35
34	Editorial: Seed Dormancy, Germination, and Pre-harvest Sprouting. Frontiers in Plant Science, 2018, 9, 1783.	3.6	35
35	Temporal and spatial pattern of the biochemical activation of the endosperm during and following imbibition of tomato seeds. Physiologia Plantarum, 1998, 102, 236-242.	5.2	33
36	Seed Traits and Genes Important for Translational Biology–Highlights from Recent Discoveries. Plant and Cell Physiology, 2012, 53, 5-15.	3.1	32

Ηιγογικι Νονοσακι

7

#	Article	IF	CITATIONS
37	<scp>DELAY OF GERMINATION</scp> Â1â€ <scp>LIKEÂ</scp> 4 acts as an inducer of seed reserve accumulation. Plant Journal, 2019, 100, 7-19.	5.7	31
38	Endo-Î ² -mannanase activity is associated with the completion of embryogenesis in imbibed carrot (Daucus carota L.) seeds. Seed Science Research, 2003, 13, 219-227.	1.7	30
39	A Merging of Paths: Abscisic Acid and Hormonal Cross-Talk in the Control of Seed Dormancy Maintenance and Alleviation. , 0, , 176-223.		30
40	A Gel Diffusion Assay for Visualization and Quantification of Chitinase Activity. Molecular Biotechnology, 2002, 22, 019-024.	2.4	29
41	Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology. Frontiers in Plant Science, 2017, 8, 90.	3.6	27
42	Repression of transcription factors by microRNA during seed germination and postgerminaiton. Plant Signaling and Behavior, 2008, 3, 65-67.	2.4	26
43	Nitric Oxide in Seed Dormancy and Germination. , 0, , 153-175.		25
44	The Long-Standing Paradox of Seed Dormancy Unfolded?. Trends in Plant Science, 2019, 24, 989-998.	8.8	22
45	microRNAs in seeds: modified detection techniques and potential applications. Canadian Journal of Botany, 2006, 84, 189-198.	1.1	21
46	Genetic Aspects of Seed Dormancy. , 0, , 113-132.		20
47	ABA responses during seed development and germination. Advances in Botanical Research, 2019, 92, 171-217.	1.1	17
48	A repressor complex silencing ABA signaling in seeds?. Journal of Experimental Botany, 2020, 71, 2847-2853.	4.8	14
49	Jasmonic acid and ethylene are involved in the accumulation of osmotin in germinating tomato seeds. Journal of Plant Physiology, 2019, 232, 74-81.	3.5	13
50	Genetic Control of Seed Development and Seed Mass. , 0, , 1-24.		10
51	Ancient Memories of Seeds: ABA-Dependent Growth Arrest and Reserve Accumulation. Trends in Genetics, 2020, 36, 464-473.	6.7	10
52	Lipid Metabolism in Seed Dormancy. , 0, , 133-152.		9
53	DE-repression of Seed Germination by GA Signaling. , 0, , 248-263.		7

54 Sugar and Abscisic Acid Regulation of Germination and Transition to Seedling Growth., 0,, 305-327.

Ηιγογικι Νονοςακι

#	Article	IF	CITATIONS
55	TOUCH ME – â€~Touch' genes in the micropylar endosperm. Seed Science Research, 2013, 23, 217-221.	1.7	5
56	Ancient and recent gene duplications as evolutionary drivers of the seed maturation regulators <i>DELAY OF GERMINATION1</i> family genes. New Phytologist, 2021, 230, 889-901.	7.3	5
57	An <i>Arabidopsis thaliana</i> embryo arrest mutant exhibiting germination potential. Seed Science Research, 2008, 18, 55-65.	1.7	4
58	MicroRNA Function in Seed Biology. , 2011, , 339-357.		3
59	Chemically inducible gene expression in seeds before testa rupture. Seed Science Research, 2015, 25, 345-352.	1.7	3
60	Seed traits and phylogenomics: prospects for the 21st century. Seed Science Research, 2022, 32, 137-143.	1.7	3
61	Transcriptomics of <i>nine-cis-epoxycarotenoid dioxygenase 6</i> induction in imbibed seeds reveals feedback mechanisms and long non-coding RNAs. Seed Science Research, 2017, 27, 251-261.	1.7	1