
Cheng-shi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1754814/publications.pdf Version: 2024-02-01

CHENC-SHI LIU

#	Article	IF	CITATIONS
1	The renormalization method for singular perturbation of solitons. Chaos, Solitons and Fractals, 2022, 158, 112074.	2.5	3
2	Two model equations with a second degree logarithmic nonlinearity and their Gaussian solutions. Communications in Theoretical Physics, 2021, 73, 045007.	1.1	35
3	The Gaussian soliton in the Fermi–Pasta–Ulam chain. Nonlinear Dynamics, 2021, 106, 899-905.	2.7	16
4	Exactly solving some typical Riemann–Liouville fractional models by a general method of separation of variables. Communications in Theoretical Physics, 2020, 72, 055006.	1.1	33
5	Counterexamples on Jumarie's three basic fractional calculus formulae for non-differentiable continuous functions. Chaos, Solitons and Fractals, 2018, 109, 219-222.	2.5	44
6	The renormalization method from continuous to discrete dynamical systems: asymptotic solutions, reductions and invariant manifolds. Nonlinear Dynamics, 2018, 94, 873-888.	2.7	16
7	On the local fractional derivative of everywhere non-differentiable continuous functions on intervals. Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 229-235.	1.7	13
8	The renormalization method based on the Taylor expansion and applications for asymptotic analysis. Nonlinear Dynamics, 2017, 88, 1099-1124.	2.7	26
9	Counterexamples on Jumarie's two basic fractional calculus formulae. Communications in Nonlinear Science and Numerical Simulation, 2015, 22, 92-94.	1.7	71
10	Ornstein–Uhlenbeck process, Cauchy process, and Ornstein–Uhlenbeck–Cauchy process on a circle. Applied Mathematics Letters, 2013, 26, 957-962.	1.5	3
11	How many first integrals imply integrability in infinite-dimensional Hamilton system. Reports on Mathematical Physics, 2011, 67, 109-123.	0.4	5
12	Trial Equation Method Based on Symmetry andÂApplications to Nonlinear Equations Arising inÂMathematical Physics. Foundations of Physics, 2011, 41, 793-804.	0.6	60
13	The essence of the generalized Taylor theorem as the foundation of the homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1254-1262.	1.7	26
14	The essence of the generalized Newton binomial theorem. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2766-2768.	1.7	28
15	The essence of the homotopy analysis method. Applied Mathematics and Computation, 2010, 216, 1299-1303.	1.4	39
16	Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Computer Physics Communications, 2010, 181, 317-324.	3.0	228
17	COMPARISON OF A GENERAL SERIES EXPANSION METHOD AND THE HOMOTOPY ANALYSIS METHOD. Modern Physics Letters B, 2010, 24, 1699-1706.	1.0	16
18	Exponential function rational expansion method for nonlinear differential–difference equations. Chaos, Solitons and Fractals, 2009, 40, 708-716.	2.5	53

Cheng-shi Liu

#	Article	IF	CITATIONS
19	Nonsymmetric entropy and maximum nonsymmetric entropy principle. Chaos, Solitons and Fractals, 2009, 40, 2469-2474.	2.5	5
20	Canonical-like transformation method and exact solutions to a class of diffusion equations. Chaos, Solitons and Fractals, 2009, 42, 441-446.	2.5	38
21	MAXIMAL NON-SYMMETRIC ENTROPY LEADS NATURALLY TO ZIPF'S LAW. Fractals, 2008, 16, 99-101.	1.8	6
22	New Exact Envelope Traveling Wave Solutions of High-Order Dispersive Cubic-Quintic Nonlinear SchrĶdinger Equation. Communications in Theoretical Physics, 2005, 44, 799-801.	1.1	43