Amalia Molinero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1754671/publications.pdf

Version: 2024-02-01

279701 276775 1,837 46 23 41 citations h-index g-index papers 46 46 46 1740 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microglial cellâ€derived interleukinâ€6 influences behavior and inflammatory response in the brain following traumatic brain injury. Glia, 2020, 68, 999-1016.	2.5	23
2	IL-6 Trans-Signaling in the Brain Influences the Metabolic Phenotype of the 3xTg-AD Mouse Model of Alzheimer's Disease. Cells, 2020, 9, 1605.	1.8	11
3	Molecular aspects of metallothioneins in dementias. , 2020, , 115-130.		0
4	IL-6 trans-signaling in the brain influences the behavioral and physio-pathological phenotype of the Tg2576 and 3xTgAD mouse models of Alzheimer's disease. Brain, Behavior, and Immunity, 2019, 82, 145-159.	2.0	26
5	Mouse metallothionein-1 and metallothionein-2 are not biologically interchangeable in an animal model of multiple sclerosis, EAE. Metallomics, 2019, 11, 327-337.	1.0	14
6	Different Responses to a High-Fat Diet in IL-6 Conditional Knockout Mice Driven by Constitutive GFAP-Cre and Synapsin 1-Cre Expression. Neuroendocrinology, 2019, 109, 113-130.	1.2	14
7	Active Induction of Experimental Autoimmune Encephalomyelitis (EAE) with MOG35–55 in the Mouse. Methods in Molecular Biology, 2018, 1791, 227-232.	0.4	22
8	Postnatal mandible growth in wild and laboratory mice: Differences revealed from bone remodeling patterns and geometric morphometrics. Journal of Morphology, 2017, 278, 1058-1074.	0.6	10
9	Influence of Transgenic Metallothionein-1 on Gliosis, CA1 Neuronal Loss, and Brain Metal Levels of the Tg2576 Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2017, 18, 251.	1.8	8
10	Role of muscle IL-6 in gender-specific metabolism in mice. PLoS ONE, 2017, 12, e0173675.	1.1	29
11	Astrocytic IL-6 Influences the Clinical Symptoms of EAE in Mice. Brain Sciences, 2016, 6, 15.	1.1	24
12	Overexpression of Metallothionein-1 Modulates the Phenotype of the Tg2576 Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 51, 81-95.	1.2	17
13	Muscular interleukin-6 differentially regulates skeletal muscle adaptation to high-fat diet in a sex-dependent manner. Cytokine, 2015, 74, 145-151.	1.4	5
14	Absence of metallothionein-3 produces changes on MT-1/2 regulation in basal conditions and alters hypothalamic-pituitary–adrenal (HPA) axis. Neurochemistry International, 2014, 74, 65-73.	1.9	1
15	Interleukinâ€6 deletion in mice driven by a <scp>P</scp> 2â€ <scp>C</scp> reâ€ <scp>ERT</scp> 2 prevents against highâ€fat dietâ€induced gain weight and adiposity in female mice. Acta Physiologica, 2014, 211, 585-596.	1.8	13
16	Muscle-specific interleukin-6 deletion influences body weight and body fat in a sex-dependent manner. Brain, Behavior, and Immunity, 2014, 40, 121-130.	2.0	28
17	Cyclic GMP phosphodiesterase inhibition alters the glial inflammatory response, reduces oxidative stress and cell death and increases angiogenesis following focal brain injury. Journal of Neurochemistry, 2010, 112, 807-817.	2.1	43
18	Effect of astrocyteâ€targeted production of ILâ€6 on traumatic brain injury and its impact on the cortical transcriptome. Developmental Neurobiology, 2008, 68, 195-208.	1.5	33

#	Article	IF	CITATIONS
19	5 Untranslated Region (5 UTR). , 2008, , 1-1.		O
20	Brain Inflammation: Tumor Necrosis Factor Receptors in Mouse Brain Inflammatory Responses., 2008,, 477-481.		0
21	Analysis of the Cerebral Transcriptome in Mice Subjected to Traumatic Brain Injury: Importance of IL-6. NeuroImmunoModulation, 2007, 14, 139-143.	0.9	11
22	Diverging mechanisms for TNF-α receptors in normal mouse brains and in functional recovery after injury: From gene to behavior. Journal of Neuroscience Research, 2007, 85, 2668-2685.	1.3	21
23	Expression of Metallothionein-I, -II, and -III in Alzheimer Disease and Animal Models of Neuroinflammation. Experimental Biology and Medicine, 2006, 231, 1450-1458.	1.1	55
24	Specificity and divergence in the neurobiologic effects of different metallothioneins after brain injury. Journal of Neuroscience Research, 2006, 83, 974-984.	1.3	45
25	Novel roles for metallothionein-I + II (MT-I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: Insights from global gene expression profiling in wild-type and MT-I + II knockout mice. Journal of Neuroscience Research, 2006, 84, 1452-1474.	1.3	45
26	Brain response to traumatic brain injury in wild-type and interleukin-6 knockout mice: a microarray analysis. Journal of Neurochemistry, 2005, 92, 417-432.	2.1	48
27	Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures. Journal of Neuroscience Research, 2005, 79, 522-534.	1.3	119
28	Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury. Journal of Neuroscience Research, 2005, 82, 701-716.	1.3	66
29	Metallothionein prevents neurodegeneration and central nervous system cell death after treatment with gliotoxin 6-aminonicotinamide. Journal of Neuroscience Research, 2004, 77, 35-53.	1.3	26
30	Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression. Glia, 2003, 42, 287-306.	2.5	38
31	Astrocyte-targeted expression of interleukin-6 protects the central nervous system during neuroglial degeneration induced by 6-aminonicotinamide. Journal of Neuroscience Research, 2003, 73, 481-496.	1.3	68
32	Astrocyte-targeted expression of IL-6 protects the CNSagainst a focal brain injury. Experimental Neurology, 2003, 181, 130-148.	2.0	127
33	Role of metallothionein-III following central nervous system damage. Neurobiology of Disease, 2003, 13, 22-36.	2.1	49
34	Metallothionein-I Overexpression Decreases Brain Pathology in Transgenic Mice with Astrocyte-Targeted Expression of Interleukin-6. Journal of Neuropathology and Experimental Neurology, 2003, 62, 315-328.	0.9	39
35	[23] Metallothionein expression and oxidative stress in the brain. Methods in Enzymology, 2002, 348, 238-249.	0.4	42
36	Metallothionein-1+2 Protect the CNS after a Focal Brain Injury. Experimental Neurology, 2002, 173, 114-128.	2.0	127

3

#	Article	IF	CITATIONS
37	Metallothionein-1+2 Deficiency Increases Brain Pathology in Transgenic Mice with Astrocyte-Targeted Expression of Interleukin 6. Neurobiology of Disease, 2002, 9, 319-338.	2.1	62
38	Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-lâ	1.2	122
39	Altered Central Nervous System Cytokine-Growth Factor Expression Profiles and Angiogenesis in Metallothionein-I+II Deficient Mice. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1174-1189.	2.4	87
40	Effect of dietary zinc deficiency on brain metallothionein-I and -III mRNA levels during stress and inflammation. Neurochemistry International, 2000, 36, 555-562.	1.9	11
41	Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice. , 1999, 25, 343-357.		171
42	Metallothionein (MT)-III: Generation of Polyclonal Antibodies, Comparison With MT-I+II in the Freeze Lesioned Rat Brain and in a Bioassay With Astrocytes, and Analysis of Alzheimer's Disease Brains. Journal of Neurotrauma, 1999, 16, 1115-1129.	1.7	79
43	Strongly compromised inflammatory response to brain injury in interleukinâ€6â€deficient mice. Glia, 1999, 25, 343-357.	2.5	4
44	Liver and brain metallothionein regulation in transgenic mice overexpressing interleukin-6 and in mice carrying a null mutation in the interleukin-6 gene., 1999,, 363-370.		4
45	Role of Glucocorticoids on Rat Brain Metallothionein-I and-III Response to Stress. Stress, 1997, 1, 231-240.	0.8	32
46	Influence of sex, age and season on the feeding habits of the flatfish Solea senegalensis. Environmental Biology of Fishes, 1996, 47, 289-298.	0.4	18