
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1754478/publications.pdf Version: 2024-02-01

YOON KI LOUNG

#	Article	IF	CITATIONS
1	Thermosensitive chitosan–Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomaterialia, 2009, 5, 1956-1965.	4.1	309
2	Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 2017, 68, 77-105.	11.8	292
3	In Situ Forming and Rutin-Releasing Chitosan Hydrogels As Injectable Dressings for Dermal Wound Healing. Biomacromolecules, 2011, 12, 2872-2880.	2.6	233
4	In Situ Forming Hydrogels Based on Tyramine Conjugated 4-Arm-PPO-PEO via Enzymatic Oxidative Reaction. Biomacromolecules, 2010, 11, 706-712.	2.6	151
5	Polymers for cell/tissue anti-adhesion. Progress in Polymer Science, 2015, 44, 28-61.	11.8	121
6	In situ cross-linkable gelatin–poly(ethylene glycol)–tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. Journal of Materials Chemistry, 2011, 21, 13180.	6.7	107
7	Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. Journal of Controlled Release, 2012, 159, 332-337.	4.8	102
8	Enhanced Patency and Endothelialization of Small-Caliber Vascular Grafts Fabricated by Coimmobilization of Heparin and Cell-Adhesive Peptides. ACS Applied Materials & Interfaces, 2016, 8, 4336-4346.	4.0	98
9	Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surface. Journal of Controlled Release, 2012, 160, 676-684.	4.8	95
10	Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle. International Journal of Pharmaceutics, 2008, 346, 57-63.	2.6	88
11	RGD-Conjugated chitosan-pluronic hydrogels as a cell supported scaffold for articular cartilage regeneration. Macromolecular Research, 2008, 16, 517-523.	1.0	83
12	Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration. Expert Opinion on Drug Delivery, 2008, 5, 1173-1184.	2.4	81
13	Supramolecular Hydrogels Exhibiting Fast In Situ Gel Forming and Adjustable Degradation Properties. Biomacromolecules, 2010, 11, 617-625.	2.6	80
14	Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration. ACS Applied Materials & Interfaces, 2016, 8, 21145-21154.	4.0	74
15	A Bioinspired Scaffold with Anti-Inflammatory Magnesium Hydroxide and Decellularized Extracellular Matrix for Renal Tissue Regeneration. ACS Central Science, 2019, 5, 458-467.	5.3	73
16	Modified Magnesium Hydroxide Nanoparticles Inhibit the Inflammatory Response to Biodegradable Poly(lactide- <i>co</i> -glycolide) Implants. ACS Nano, 2018, 12, 6917-6925.	7.3	71
17	Recent advances to accelerate re-endothelialization for vascular stents. Journal of Tissue Engineering, 2017, 8, 204173141773154.	2.3	69
18	Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold–mediated chondrogenesis. Acta Biomaterialia, 2018, 73, 204-216.	4.1	66

#	Article	IF	CITATIONS
19	Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A. Journal of Controlled Release, 2010, 147, 420-427.	4.8	61
20	Nanoaggregate of thermosensitive chitosan-Pluronic for sustained release of hydrophobic drug. Colloids and Surfaces B: Biointerfaces, 2008, 63, 1-6.	2.5	59
21	The use of low molecular weight heparin–pluronic nanogels to impede liver fibrosis by inhibition the TGF-β/Smad signaling pathway. Biomaterials, 2011, 32, 1438-1445.	5.7	55
22	Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation. Journal of Materials Chemistry B, 2013, 1, 2764.	2.9	54
23	RGD peptide-immobilized electrospun matrix of polyurethane for enhanced endothelial cell affinity. Biomedical Materials (Bristol), 2008, 3, 044104.	1.7	53
24	In situ hydrogelation and RGDconjugation of tyramine-conjugated 4-arm PPO–PEOblock copolymer for injectable bio-mimetic scaffolds. Soft Matter, 2011, 7, 986-992.	1.2	53
25	Shapeâ€Memory Effect by Specific Biodegradable Polymer Blending for Biomedical Applications. Macromolecular Bioscience, 2014, 14, 667-678.	2.1	53
26	A Poly(lactide) Stereocomplex Structure with Modified Magnesium Oxide and Its Effects in Enhancing the Mechanical Properties and Suppressing Inflammation. Small, 2014, 10, 3783-3794.	5.2	50
27	Self-assembled nanogel of pluronic-conjugated heparin as a versatile drug nanocarrier. Macromolecular Research, 2011, 19, 180-188.	1.0	45
28	Nitric Oxide Releasing Coronary Stent: A New Approach Using Layer-by-Layer Coating and Liposomal Encapsulation. Small, 2016, 12, 6012-6023.	5.2	45
29	Optimized stability retention of a monoclonal antibody in the PLGA nanoparticles. International Journal of Pharmaceutics, 2009, 368, 178-185.	2.6	44
30	Targeting ligand-functionalized and redox-sensitive heparin-Pluronic nanogels for intracellular protein delivery. Biomedical Materials (Bristol), 2011, 6, 055004.	1.7	40
31	RGD-conjugated In Situ forming hydrogels as cell-adhesive injectable scaffolds. Macromolecular Research, 2011, 19, 300-306.	1.0	40
32	Optimal conjugation of catechol group onto hyaluronic acid in coronary stent substrate coating for the prevention of restenosis. Journal of Tissue Engineering, 2016, 7, 204173141668374.	2.3	40
33	Heparin-Conjugated Pluronic Nanogels as Multi-Drug Nanocarriers for Combination Chemotherapy. Molecular Pharmaceutics, 2013, 10, 685-693.	2.3	39
34	Thermosensitive gallic acid-conjugated hexanoyl glycol chitosan as a novel wound healing biomaterial. Carbohydrate Polymers, 2021, 260, 117808.	5.1	39
35	Growth factors-loaded stents modified with hyaluronic acid and heparin for induction of rapid and tight re-endothelialization. Colloids and Surfaces B: Biointerfaces, 2016, 141, 602-610.	2.5	38
36	In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating. Colloids and Surfaces B: Biointerfaces, 2012, 99, 102-107.	2.5	36

#	Article	IF	CITATIONS
37	Synergistically enhanced osteoconductivity and anti-inflammation of PLGA/β-TCP/Mg(OH)2 composite for orthopedic applications. Materials Science and Engineering C, 2019, 94, 65-75.	3.8	34
38	Improvement of Interfacial Adhesion of Biodegradable Polymers Coated on Metal Surface by Nanocoupling. Langmuir, 2011, 27, 14232-14239.	1.6	33
39	Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomaterialia, 2020, 111, 91-101.	4.1	33
40	PLGA microparticle-embedded thermosensitive hydrogels for sustained release of hydrophobic drugs. Biomedical Materials (Bristol), 2007, 2, 269-273.	1.7	30
41	Lipid-based carriers for controlled delivery of nitric oxide. Expert Opinion on Drug Delivery, 2017, 14, 1341-1353.	2.4	30
42	Tetronic–Oligolactide–Heparin Hydrogel as a Multiâ€Functional Scaffold for Tissue Regeneration. Macromolecular Bioscience, 2008, 8, 1152-1160.	2.1	28
43	Heparinâ€conjugated starâ€shaped PLA for improved biocompatibility. Journal of Biomedical Materials Research - Part A, 2008, 86A, 842-848.	2.1	28
44	Balanced adhesion and cohesion of chitosan matrices by conjugation and oxidation of catechol for high-performance surgical adhesives. Carbohydrate Polymers, 2020, 248, 116760.	5.1	27
45	In situ gel forming stereocomplex composed of four-arm PEG-PDLA and PEG-PLLA block copolymers. Macromolecular Research, 2008, 16, 704-710.	1.0	26
46	Effect of Solvent on Drug Release and a Spray-Coated Matrix of a Sirolimus-Eluting Stent Coated with Poly(lactic- <i>co</i> -glycolic acid). Langmuir, 2014, 30, 10098-10106.	1.6	26
47	Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent. Journal of Colloid and Interface Science, 2015, 460, 189-199.	5.0	26
48	Fabrication and characteristics of dual functionalized vascular stent by spatio-temporal coating. Acta Biomaterialia, 2016, 38, 143-152.	4.1	26
49	Plateletâ€rich plasma loaded <i>in situ</i> â€formed hydrogel enhances hyaline cartilage regeneration by CB1 upregulation. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3099-3107.	2.1	25
50	Effect of various shaped magnesium hydroxide particles on mechanical and biological properties of poly(lactic- co -glycolic acid) composites. Journal of Industrial and Engineering Chemistry, 2018, 59, 266-276.	2.9	25
51	An <i>In Situ</i> Gel-Forming Heparin-Conjugated PLGA-PEG-PLGA Copolymer. Journal of Bioactive and Compatible Polymers, 2008, 23, 444-457.	0.8	24
52	Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface. Colloids and Surfaces B: Biointerfaces, 2014, 122, 808-817.	2.5	24
53	Effects of poly(L-lactide-ε-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid). Biomaterials Research, 2016, 20, 7.	3.2	23
54	Comparison of phytoncide with sirolimus as a novel drug candidate for drug-eluting stent. Biomaterials, 2015, 44, 1-10.	5.7	22

#	Article	IF	CITATIONS
55	Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model. Experimental and Molecular Medicine, 2018, 50, 1-14.	3.2	22
56	Anticoagulant supramolecular-structured polymers: Synthesis and anti coagulant activity of taurine-conjugated carboxyethylester-polyrotaxanes. Science and Technology of Advanced Materials, 2005, 6, 484-490.	2.8	20
57	Reinforcement of Interfacial Adhesion of a Coated Polymer Layer on a Cobalt–Chromium Surface for Drug-Eluting Stents. Langmuir, 2014, 30, 8020-8028.	1.6	20
58	6-arm PLLA-PEG block copolymers for micelle formation and controlled drug release. Macromolecular Research, 2008, 16, 66-69.	1.0	19
59	Hyper-branched poly(poly(ethylene glycol)methacrylate)-grafted surfaces by photo-polymerization with iniferter for bioactive interfaces. Acta Biomaterialia, 2008, 4, 960-966.	4.1	18
60	Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures. Journal of Industrial and Engineering Chemistry, 2018, 67, 396-406.	2.9	18
61	Fabrication of endothelial cell-specific polyurethane surfaces co-immobilized with GRGDS and YIGSR peptides. Macromolecular Research, 2009, 17, 458-463.	1.0	17
62	Fabrication and characteristics of anti-inflammatory magnesium hydroxide incorporated PLGA scaffolds formed with various porogen materials. Macromolecular Research, 2014, 22, 210-218.	1.0	17
63	A Promising Approach for Improving the Coating Stability and <i>In Vivo</i> Performance of Biodegradable Polymer-Coated Sirolimus-Eluting Stent. Journal of Biomedical Nanotechnology, 2016, 12, 2015-2028.	0.5	16
64	Synergistic effect of anti-platelet and anti-inflammation of drug-coated Co–Cr substrates for prevention of initial in-stent restenosis. Colloids and Surfaces B: Biointerfaces, 2016, 140, 353-360.	2.5	15
65	Sustained Cytoplasmic Delivery and Anti-viral Effect of PLGA Nanoparticles Carrying a Nucleic Acid-Hydrolyzing Monoclonal Antibody. Pharmaceutical Research, 2012, 29, 932-942.	1.7	14
66	Estrogen release from metallic stent surface for the prevention of restenosis. Journal of Controlled Release, 2003, 92, 83-91.	4.8	13
67	Evaluation of the effect of expansion and shear stress on a self-assembled endothelium mimicking nanomatrix coating for drug eluting stents in vitro and in vivo. Biofabrication, 2014, 6, 035019.	3.7	13
68	Silicone rubber with mussel-inspired adhesive coatings for enhancing antifouling property and blood compatibility. Macromolecular Research, 2017, 25, 841-848.	1.0	13
69	Nitric oxide releasing lipid bilayer tethered on titanium and its effects on vascular cells. Journal of Industrial and Engineering Chemistry, 2019, 80, 811-819.	2.9	13
70	Nano-aggregates using thermosensitive chitosan copolymers as a nanocarrier for protein delivery. Journal of Experimental Nanoscience, 2009, 4, 269-275.	1.3	12
71	CD34 monoclonal antibody-immobilized electrospun polyurethane for the endothelialization of vascular grafts. Macromolecular Research, 2010, 18, 904-912.	1.0	12
72	Effect of stromal cell derived factor-11± release from heparin-coated Co-Cr stent substrate on the recruitment of endothelial progenitor cells. Macromolecular Research, 2015, 23, 1159-1167.	1.0	11

#	Article	IF	CITATIONS
73	The effect of solvents and hydrophilic additive on stable coating and controllable sirolimus release system for drug-eluting stent. Materials Science and Engineering C, 2017, 78, 39-46.	3.8	11
74	Persulfated flavonoids accelerated re-endothelialization and improved blood compatibility for vascular medical implants. Colloids and Surfaces B: Biointerfaces, 2019, 181, 174-184.	2.5	11
75	Scaffold-supported extracellular matrices preserved by magnesium hydroxide nanoparticles for renal tissue regeneration. Biomaterials Science, 2020, 8, 5427-5440.	2.6	11
76	Effect of magnesium hydroxide nanoparticles with rod and plate shape on mechanical and biological properties of poly(L-lactide) composites. Macromolecular Research, 2014, 22, 1032-1041.	1.0	10
77	Crack prevention of biodegradable polymer coating on metal facilitated by a nano-coupled interlayer. Journal of Bioactive and Compatible Polymers, 2014, 29, 515-526.	0.8	10
78	Surface-Modifying Effect of Zwitterionic Polyurethane Oligomers Complexed with Metal Ions on Blood Compatibility. Tissue Engineering and Regenerative Medicine, 2022, 19, 35-47.	1.6	10
79	Covalent immobilization of fibroblast-derived matrix on metallic stent for expeditious re-endothelialization. Journal of Industrial and Engineering Chemistry, 2019, 70, 385-393.	2.9	7
80	Surface-Modifying Polymers for Blood-Contacting Polymeric Biomaterials. Advances in Experimental Medicine and Biology, 2020, 1250, 189-198.	0.8	7
81	Improvement of mechanical properties and blood compatibility of PLLA nanocomposites by incorporation of polyhedral oligomeric silsesquioxane. Macromolecular Research, 2012, 20, 996-1001.	1.0	6
82	Sustained drug release using cobalt oxide nanowires for the preparation of polymer-free drug-eluting stents. Journal of Biomaterials Applications, 2018, 33, 352-362.	1.2	6
83	Anti-thrombotic polymer surfaces modified with zwitterionic and fluorinated surface-migrating oligomers. Surfaces and Interfaces, 2021, 25, 101280.	1.5	6
84	Recent alternative approaches of vascular drug-eluting stents. Journal of Pharmaceutical Investigation, 2018, 48, 153-165.	2.7	5
85	Dual-Layer Coated Drug-Eluting Stents with Improved Degradation Morphology and Controlled Drug Release. Macromolecular Research, 2018, 26, 641-649.	1.0	5
86	In vivo bioluminescence imaging for viable human neural stem cells incorporated within in situ gelatin hydrogels. EJNMMI Research, 2014, 4, 61.	1.1	3
87	Endothelial Cell-Derived Tethered Lipid Bilayers Generating Nitric Oxide for Endovascular Implantation. ACS Applied Bio Materials, 2021, 4, 6381-6393.	2.3	3
88	Comparing the cytotoxic effect of light-emitting and organic light-emitting diodes based light therapy on human adipose-derived stem cells. Journal of Industrial and Engineering Chemistry, 2021, 103, 239-246.	2.9	3
89	Advanced Stents for Cardiovascular Applications. Biosystems and Biorobotics, 2016, , 407-426.	0.2	3
90	Facile Surface Modification of Nitinol with Dopamine-Conjugated Hyaluronic Acid for Improving Blood Compatibility. Journal of Biomaterials and Tissue Engineering, 2016, 6, 780-787.	0.0	3

#	Article	IF	CITATIONS
91	Precise ultrasonic coating and controlled release of sirolimus with biodegradable polymers for drug-eluting stent. Biomaterials and Biomechanics in Bioengineering, 2014, 1, 13-25.	0.1	3
92	A Robustly Supported Extracellular Matrix Improves the Intravascular Delivery Efficacy of Endothelial Progenitor Cells. Advanced Functional Materials, 2021, 31, 2100324.	7.8	2
93	Optimized sirolimus-eluting stent by coating asymmetrically with biodegradable and cytocompatible polymers. Asian Journal of Pharmaceutical Sciences, 2016, 11, 160-161.	4.3	1
94	Tissue-Inspired Interfacial Coatings for Regenerative Medicine. Advances in Experimental Medicine and Biology, 2018, 1077, 415-420.	0.8	1
95	Exosomes and Supported Lipid Layers as Advanced Naturally Derived Drug Delivery Systems. , 2021, , 361-373.		1
96	Heparin-Conjugated Nanointerfaces for Biomedical Applications. , 2009, , 247-271.		0
97	Novel Hydrogel Systems as Injectable Scaffolds for Tissue Engineering. , 2008, , .		0
98	Coating defects in polymer-coated drug-eluting stents. Biomaterials and Biomechanics in Bioengineering, 2014, 1, 131-150.	0.1	0