Houxiu Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1754355/publications.pdf

Version: 2024-02-01

39	377 citations	1040056 9 h-index	18 g-index
papers	Citations	II-IIIQEX	g-mucx
40 all docs	40 docs citations	40 times ranked	283 citing authors

#	Article	IF	CITATIONS
1	Repetitive and High Voltage Marx Generator Using Solid-state Devices. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14, 937-940.	2.9	97
2	Development of a High-Stability Flat-Top Pulsed Magnetic Field Facility. IEEE Transactions on Power Electronics, 2014, 29, 4532-4537.	7.9	32
3	Magnet Development Program at the WHMFC. IEEE Transactions on Applied Superconductivity, 2012, 22, 4300304-4300304.	1.7	24
4	Study on a Highly Stabilized Pulsed Power Supply for High Magnetic Fields. IEEE Transactions on Power Electronics, 2011, 26, 3817-3822.	7.9	23
5	Design and Performance of the First Dual-Coil Magnet at the Wuhan National High Magnetic Field Center. Journal of Low Temperature Physics, 2013, 170, 463-468.	1.4	23
6	Investigation on the Parasitic Capacitance of High Frequency and High Voltage Transformers of Multi-Section Windings. IEEE Access, 2020, 8, 14065-14073.	4.2	22
7	Uniaxial fatigue behavior of Cu–Nb micro-composite conductor, part I: Effect of peak stress and stress ratio. International Journal of Fatigue, 2016, 91, 275-285.	5 . 7	15
8	Fatigue Properties of Cu–Nb Conductor Used for Pulsed Magnets at the WHMFC. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	11
9	Influence of Misalignment on the Behavior of Electron Beam of an 800 GHz Gyrotron. IEEE Electron Device Letters, 2021, 42, 1662-1665.	3.9	10
10	Uniaxial fatigue behavior of Cu-Nb micro-composite conductor, Part II: Modeling and simulation. International Journal of Fatigue, 2016, 91, 286-292.	5.7	9
11	A high repetition rate nanosecond pulsed power supply for nonthermal plasma generation. IEEE Transactions on Plasma Science, 2005, 33, 1182-1185.	1.3	8
12	Investigation of the Alignment Method for High-Frequency Gyrotrons. IEEE Transactions on Terahertz Science and Technology, 2020, 10, 460-465.	3.1	8
13	Buckling analysis of pulsed magnets under high Lorentz force. Thin-Walled Structures, 2020, 148, 106604.	5. 3	8
14	Numerical and Experimental Verification of a Pulsed Magnet for an 800-GHz Gyrotron. IEEE Transactions on Electron Devices, 2020, 67, 4460-4466.	3.0	7
15	Zones of soft and hard self-excitation in gyrotrons: Generalized approach. Physics of Plasmas, 2020, 27, .	1.9	7
16	GYROCOMPU: Toolbox Designed for the Analysis of Gyrotron Resonators. IEEE Transactions on Plasma Science, 2020, 48, 3007-3016.	1.3	7
17	A Novel Design of Multi-Coil Pulsed Magnet System for 100 T. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-4.	1.7	7
18	A broad range frequency measurement method for continuous and pulsed THz waves. Review of Scientific Instruments, 2020, 91, 014710.	1.3	6

#	Article	lF	Citations
19	Saddle-Shaped Post-Assembly Magnetization Coil for a 300 kW 2-Pole High-Speed Permanent Magnet Rotor. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	5
20	Optimization Design of Flat-Top Pulsed Magnet for an 800-GHz Second Harmonic Gyrotron. IEEE Transactions on Electron Devices, 2020, 67, 1234-1239.	3.0	5
21	Modeling a 3.5 Mev Induction Voltage Adder. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14, 907-912.	2.9	4
22	High-Performance Pulsed Magnetic Fields at the Wuhan National High Magnetic Field Center. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	4
23	Predicting the failure of pulsed magnets. Review of Scientific Instruments, 2018, 89, 124705.	1.3	4
24	Compact Pulsed Magnets Designed for an 800 GHz, 2th Harmonics Gyrotron., 2019,,.		4
25	Globally Optimal Algorithm of Superconducting Magnet Design for Gyrotrons. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	4
26	Detecting and Positioning the Insulation Failure of Pulsed Magnets. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-3.	1.7	3
27	Functional Analysis Method for Nonlinear Theory of Gyrotrons. IEEE Transactions on Plasma Science, 2019, 47, 3141-3147.	1.3	3
28	Study of the Fatigue Behavior of the Unidirectional Zylon/epoxy Composite Used in Pulsed Magnets. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	3
29	Failure Analysis of the 100 T Pulsed Magnet at the WHMFC. IEEE Transactions on Industry Applications, 2022, 58, 6145-6151.	4.9	3
30	Design and Test of a Long-Pulse Large Current Sensor With a Hall Probe Installed Inside. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	2
31	A Modified Mechanical Model for the Optimization of High Field Solenoid Magnets. IEEE Access, 2020, , 1-1.	4.2	2
32	Shadowing of the operating mode by sidebands in gyrotrons with diode-type electron guns. Physics of Plasmas, 2021, 28, 013110.	1.9	2
33	Failure Analysis of a 100 Tesla Pulsed Magnet. , 2020, , .		2
34	A Current-Injection-Based Approach for Reducing Power Loss of the IGBTs in FTPMF System Driven by Battery-Bank. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	1
35	Mode Excitation in Gyrotrons With Triode-Type Electron Guns. IEEE Transactions on Electron Devices, 2022, 69, 785-791.	3.0	1
36	Evaluation of emission inhomogeneity of gyrotron scandate cathodes. Vacuum, 2022, 202, 111147.	3.5	1

Houxiu Xiao

#	Article	IF	CITATIONS
37	Modeling a 3.5 MEV Induction Voltage Adder. , 2007, , .		O
38	45 T Pulsed Magnets for the THz Gyrotrons. , 2018, , .		0
39	Magnetron Injection Gun for an 800 GHz Pulsed Gyrotron. , 2021, , .		O