Ramon Alemany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1754022/publications.pdf

Version: 2024-02-01

57	3,169 citations	186209 28 h-index	53 g-index
papers	CITATIONS	II-IIIQEX	g-mdex
59 all docs	59 docs citations	59 times ranked	2795 citing authors

#	Article	IF	CITATIONS
1	Replicative adenoviruses for cancer therapy. Nature Biotechnology, 2000, 18, 723-727.	9.4	403
2	Blood clearance rates of adenovirus type 5 in mice. Journal of General Virology, 2000, 81, 2605-2609.	1.3	352
3	Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus–Driven Production of a Bispecific T-cell Engager. Cancer Immunology Research, 2018, 6, 605-616.	1.6	199
4	Hyaluronidase Expression by an Oncolytic Adenovirus Enhances Its Intratumoral Spread and Suppresses Tumor Growth. Molecular Therapy, 2010, 18, 1275-1283.	3.7	170
5	Oncolytic Adenoviral Delivery of an EGFR-Targeting T-cell Engager Improves Antitumor Efficacy. Cancer Research, 2017, 77, 2052-2063.	0.4	128
6	Shaping the Tumor Stroma and Sparking Immune Activation by CD40 and 4-1BB Signaling Induced by an Armed Oncolytic Virus. Clinical Cancer Research, 2017, 23, 5846-5857.	3.2	108
7	Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager., 2019, 7, 19.		106
8	CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge. Frontiers in Immunology, 2018, 9, 2460.	2.2	101
9	Oncolytic Adenovirus ICOVIR-7 in Patients with Advanced and Refractory Solid Tumors. Clinical Cancer Research, 2010, 16, 3035-3043.	3.2	97
10	Encapsulated Stem Cells Loaded With Hyaluronidase-expressing Oncolytic Virus for Brain Tumor Therapy. Molecular Therapy, 2015, 23, 108-118.	3.7	97
11	Safety and Efficacy of VCN-01, an Oncolytic Adenovirus Combining Fiber HSG-Binding Domain Replacement with RGD and Hyaluronidase Expression. Clinical Cancer Research, 2015, 21, 1406-1418.	3.2	94
12	Systemic Toxicity–Efficacy Profile of ICOVIR-5, a Potent and Selective Oncolytic Adenovirus Based on the pRB Pathway. Molecular Therapy, 2007, 15, 1607-1615.	3.7	84
13	The presence of the adenovirus E3 region improves the oncolytic potency of conditionally replicative adenoviruses. Clinical Cancer Research, 2002, 8, 3348-59.	3.2	75
14	Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. Journal of General Virology, 2006, 87, 2487-2495.	1.3	69
15	Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Science Translational Medicine, 2019, 11, .	5.8	67
16	A Phase 1 Trial of Oncolytic Adenovirus ICOVIR-5 Administered Intravenously to Cutaneous and Uveal Melanoma Patients. Human Gene Therapy, 2019, 30, 352-364.	1.4	66
17	Minimal RB-responsive E1A Promoter Modification to Attain Potency, Selectivity, and Transgene-arming Capacity in Oncolytic Adenoviruses. Molecular Therapy, 2010, 18, 1960-1971.	3.7	61
18	Bioselection of a Gain of Function Mutation that Enhances Adenovirus 5 Release and Improves Its Antitumoral Potency. Cancer Research, 2008, 68, 8928-8937.	0.4	52

#	Article	IF	CITATIONS
19	Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. Journal of Controlled Release, 2016, 237, 78-88.	4.8	51
20	Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget, 2017, 8, 45415-45431.	0.8	47
21	Tumor cells as cellular vehicles to deliver gene therapies to metastatic tumors. Cancer Gene Therapy, 2005, 12, 341-349.	2.2	46
22	Replacement of Adenovirus Type 5 Fiber Shaft Heparan Sulfate Proteoglycan-Binding Domain with RGD for Improved Tumor Infectivity and Targeting. Human Gene Therapy, 2009, 20, 1214-1221.	1.4	46
23	Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma. Clinical Cancer Research, 2021, 27, 889-902.	3.2	41
24	Oncolytic viruses from the perspective of the immune system. Future Microbiology, 2009, 4, 527-536.	1.0	40
25	The Oncolytic Adenovirus VCN-01 as Therapeutic Approach Against Pediatric Osteosarcoma. Clinical Cancer Research, 2016, 22, 2217-2225.	3.2	38
26	Antitumorâ€specific Tâ€cell responses induced by oncolytic adenovirus ONCOSâ€102 (AdV5/3â€D24â€GMâ€CS peritoneal mesothelioma mouse model. Journal of Medical Virology, 2018, 90, 1669-1673.	F) in 2.5	36
27	Enhanced Antitumor Efficacy of Oncolytic Adenovirus–loaded Menstrual Blood–derived Mesenchymal Stem Cells in Combination with Peripheral Blood Mononuclear Cells. Molecular Cancer Therapeutics, 2019, 18, 127-138.	1.9	35
28	Verapamil Results in Increased Blood Levels of Oncolytic Adenovirus in Treatment of Patients With Advanced Cancer. Molecular Therapy, 2012, 20, 221-229.	3.7	33
29	Oncolytic Adenoviruses in Cancer Treatment. Biomedicines, 2014, 2, 36-49.	1.4	32
30	Characterization of the Antiglioma Effect of the Oncolytic Adenovirus VCN-01. PLoS ONE, 2016, 11, e0147211.	1.1	31
31	VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects., 2021, 9, e003254.		31
32	Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors., 2022, 10, e003255.		26
33	Adenovirus i-Leader Truncation Bioselected Against Cancer-associated Fibroblasts to Overcome Tumor Stromal Barriers. Molecular Therapy, 2012, 20, 54-62.	3.7	25
34	Design of Improved Oncolytic Adenoviruses. Advances in Cancer Research, 2012, 115, 93-114.	1.9	24
35	Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Molecular Therapy, 2019, 27, 230-243.	3.7	24
36	Coagulation Factors Determine Tumor TransductionIn Vivo. Human Gene Therapy, 2008, 19, 1415-1420.	1.4	22

#	Article	IF	Citations
37	Enhanced antitumor efficacy of an oncolytic adenovirus armed with an EGFR-targeted BiTE using menstrual blood-derived mesenchymal stem cells as carriers. Cancer Gene Therapy, 2020, 27, 383-388.	2.2	22
38	Designing Adenoviral Vectors for Tumor-Specific Targeting. Methods in Molecular Biology, 2009, 542, 56-74.	0.4	17
39	Evolving Status of Clinical Immunotherapy with Oncolytic Adenovirus. Clinical Cancer Research, 2021, 27, 2979-2988.	3.2	17
40	Verapamil Enhances the Antitumoral Efficacy of Oncolytic Adenoviruses. Molecular Therapy, 2010, 18, 903-911.	3.7	16
41	Evidence of Anti-tumoral Efficacy in an Immune Competent Setting with an iRGD-Modified Hyaluronidase-Armed Oncolytic Adenovirus. Molecular Therapy - Oncolytics, 2018, 8, 62-70.	2.0	15
42	Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers, 2020, 12, 1034.	1.7	15
43	Oncolytic adenovirus with hyaluronidase activity that evades neutralizing antibodies: VCN-11. Journal of Controlled Release, 2021, 332, 517-528.	4.8	14
44	Hyaluronidase expression within tumors increases virotherapy efficacy and TÂcell accumulation. Molecular Therapy - Oncolytics, 2021, 22, 27-35.	2.0	13
45	First-in-child trial of celyvir (autologous mesenchymal stem cells carrying the oncolytic virus) Tj ETQq1 1 0.784314 Oncology, 2018, 36, 10543-10543.	rgBT /Ove 0.8	erlock 10 Tf 12
46	The oncolytic adenovirus VCN-01 promotes anti-tumor effect in primitive neuroectodermal tumor models. Scientific Reports, 2019, 9, 14368.	1.6	10
47	Oncolytic virotherapy for neuroblastoma. Discovery Medicine, 2010, 10, 387-93.	0.5	10
48	Immune priming using DC- and TÂcell-targeting gene therapy sensitizes both treated and distant B16 tumors to checkpoint inhibition. Molecular Therapy - Oncolytics, 2022, 24, 429-442.	2.0	9
49	Methods to Construct Recombinant Adenovirus Vectors. Methods in Molecular Biology, 2011, 737, 117-138.	0.4	8
50	Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome. Nanomaterials, 2020, 10, 1183.	1.9	7
51	Mutanome and expression of immune response genes in microsatellite stable colon cancer. Oncotarget, 2016, 7, 17711-17725.	0.8	6
52	Delivery of an adenovirus vector plasmid by ultrapure oligochitosan based polyplexes. International Journal of Pharmaceutics, 2015, 479, 312-319.	2.6	5
53	Arming Oncolytic Adenoviruses: Effect of Insertion Site and Splice Acceptor on Transgene Expression and Viral Fitness. International Journal of Molecular Sciences, 2020, 21, 5158.	1.8	5
54	Predicting MHC I restricted T cell epitopes in mice with NAP-CNB, a novel online tool. Scientific Reports, 2021, 11, 10780.	1.6	4

#	Article	IF	CITATIONS
55	A phase I trial of oncolytic adenovirus ICOVIR-5 administered intravenously to melanoma patients. Human Gene Therapy Clinical Development, 2018, , .	3.2	3
56	Conditionally Replicative Adenoviruses—Clinical Trials. , 2016, , 335-348.		1
57	Transgene codon usage drives viral fitness and therapeutic efficacy in oncolytic adenoviruses. NAR Cancer, 2021, 3, zcab015.	1.6	1