
Tarmo Virtanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1753865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	8
2	Variation in CO ₂ and CH ₄ fluxes among land cover types in heterogeneous Arctic tundra in northeastern Siberia. Biogeosciences, 2022, 19, 3151-3167.	3.3	6
3	Predicting catchment-scale methane fluxes with multi-source remote sensing. Landscape Ecology, 2021, 36, 1177-1195.	4.2	19
4	Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons. Biogeosciences, 2021, 18, 873-896.	3.3	15
5	Aboveground biomass patterns across treeless northern landscapes. International Journal of Remote Sensing, 2021, 42, 4536-4561.	2.9	2
6	Warming climate forcing impact from a sub-arctic peatland as a result of late Holocene permafrost aggradation and initiation of bare peat surfaces. Quaternary Science Reviews, 2021, 264, 107022.	3.0	3
7	The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth System Science Data, 2021, 13, 5127-5149.	9.9	46
8	Detecting northern peatland vegetation patterns at ultraâ€high spatial resolution. Remote Sensing in Ecology and Conservation, 2020, 6, 457-471.	4.3	27
9	Peatland leaf-area index and biomass estimation with ultra-high resolution remote sensing. GIScience and Remote Sensing, 2020, 57, 943-964.	5.9	21
10	Water flow controls the spatial variability of methane emissions in a northern valley fen ecosystem. Biogeosciences, 2020, 17, 6247-6270.	3.3	10
11	Comparing ultraâ€high spatial resolution remoteâ€sensing methods in mapping peatland vegetation. Journal of Vegetation Science, 2019, 30, 1016-1026.	2.2	23
12	Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes. Remote Sensing of Environment, 2019, 230, 111207.	11.0	74
13	Interpreting eddy covariance data from heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial representativeness. Biogeosciences, 2019, 16, 255-274.	3.3	30
14	Usability of one-class classification in mapping and detecting changes in bare peat surfaces in the tundra. International Journal of Remote Sensing, 2019, 40, 4083-4103.	2.9	8
15	Predicting aboveground biomass in Arctic landscapes using very high spatial resolution satellite imagery and field sampling. International Journal of Remote Sensing, 2019, 40, 1175-1199.	2.9	15
16	The current state of CO ₂ flux chamber studies in the Arctic tundra. Progress in Physical Geography, 2018, 42, 162-184.	3.2	41
17	More than A to B: Understanding and managing visitor spatial behaviour in urban forests using public participation GIS. Journal of Environmental Management, 2018, 207, 124-133.	7.8	48
18	Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data. Biogeosciences, 2018, 15, 2781-2801.	3.3	26

TARMO VIRTANEN

#	Article	IF	CITATIONS
19	Where are the hotspots and coldspots of landscape values, visitor use and biodiversity in an urban forest?. PLoS ONE, 2018, 13, e0203611.	2.5	13
20	Smartphone GPS tracking—Inexpensive and efficient data collection on recreational movement. Landscape and Urban Planning, 2017, 157, 608-617.	7.5	99
21	Spatial variation and seasonal dynamics of leaf-area index in the arctic tundra-implications for linking ground observations and satellite images. Environmental Research Letters, 2017, 12, 095002.	5.2	33
22	Dissolved organic matter dynamics during the spring snowmelt at a boreal river valley mire complex in Northwest Russia. Hydrological Processes, 2016, 30, 1727-1741.	2.6	7
23	Land cover change on the Isthmus of Karelia 1939–2005: Agricultural abandonment and natural succession. Environmental Science and Policy, 2016, 55, 127-134.	4.9	15
24	Contrasting spatial and temporal trends of protected area effectiveness in mitigating deforestation in Madagascar. Biological Conservation, 2016, 203, 290-297.	4.1	57
25	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	5.2	199
26	Bird Assemblages in a Malagasy Forest-Agricultural Frontier: Effects of Habitat Structure and Forest Cover. Tropical Conservation Science, 2015, 8, 681-710.	1.2	20
27	The fragmented nature of tundra landscape. International Journal of Applied Earth Observation and Geoinformation, 2014, 27, 4-12.	2.8	59
28	Spatiotemporal dynamics of plant occurrence in an urban forest fragment. Plant Ecology, 2013, 214, 669-683.	1.6	7
29	Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe. Holocene, 2013, 23, 1596-1606.	1.7	76
30	Competitive exclusion within the predator community influences the distribution of a threatened prey species. Ecology, 2012, 93, 1802-1808.	3.2	36
31	High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic. Journal of Geophysical Research, 2011, 116, .	3.3	88
32	Soil organic carbon pools in a periglacial landscape: a case study from the central Canadian Arctic. Permafrost and Periglacial Processes, 2010, 21, 16-29.	3.4	79
33	Changing stock of biomass carbon in a boreal forest over 93 years. Forest Ecology and Management, 2010, 259, 1239-1244.	3.2	43
34	The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane. Quaternary Science Reviews, 2010, 29, 611-617.	3.0	109
35	Differences in the forest landscape structure along the Finnish–Russian border in southern Karelia. Scandinavian Journal of Forest Research, 2009, 24, 140-148.	1.4	5
36	Large N2O emissions from cryoturbated peat soil in tundra. Nature Geoscience, 2009, 2, 189-192.	12.9	171

TARMO VIRTANEN

#	Article	IF	CITATIONS
37	Multiple indicators of human impacts on the environment in the Pechora Basin, north-eastern European Russia. Ecological Indicators, 2009, 9, 765-779.	6.3	46
38	Perceived and Measured Levels of Environmental Pollution: Interdisciplinary Research in the Subarctic Lowlands of Northeast European Russia. Ambio, 2006, 35, 220-228.	5.5	20
39	Modeling the Location of the Forest Line in Northeast European Russia with Remotely Sensed Vegetation and GIS-Based Climate and Terrain Data. Arctic, Antarctic, and Alpine Research, 2004, 36, 314-322.	1.1	18
40	Satellite image based vegetation classification of a large area using limited ground reference data: a case study in the Usa Basin, north-east European Russia. Polar Research, 2004, 23, 51-66.	1.6	23
41	Carbon balance in East European tundra. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	87
42	Satellite image based vegetation classification of a large area using limited ground reference data: a case study in the Usa Basin, north-east European Russia. Polar Research, 2004, 23, 51-66.	1.6	11
43	Sensitivity Analysis of Discharge in the Arctic Usa Basin, East-European Russia. Climatic Change, 2003, 57, 139-161.	3.6	13
44	Palaeoecological evidence of changes in vegetation and climate during the Holocene in the pre-Polar Urals, northeast European Russia. Journal of Quaternary Science, 2003, 18, 503-520.	2.1	40
45	Satellite image analysis of human caused changes in the tundra vegetation around the city of Vorkuta, north-European Russia. Environmental Pollution, 2002, 120, 647-658.	7.5	37
46	Performance of moth larvae on birch in relation to altitude, climate, host quality and parasitoids. Oecologia, 1999, 120, 92-101.	2.0	90
47	Climate change and macrolepidopteran biodiversity in Finland. Chemosphere, 1999, 1, 439-448.	1.2	34
48	Modelling topoclimatic patterns of egg mortality of Epirrita autumnata (Lepidoptera: Geometridae) with a Geographical Information System: predictions for current climate and warmer climate scenarios. Journal of Applied Ecology, 1998, 35, 311-322.	4.0	79
49	Old Mountain Birches at High Altitudes are Prone to Outbreaks of Epirrita autumnata (Lepidoptera:) Tj ETQq1 1	0.784314 1.4	l rgBT /Overlo
50	Climate change and the risks of Neodiprion sertifer outbreaks on Scots pine Silva Fennica, 1996, 30, .	1.3	36