Michael T Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1753229/publications.pdf

Version: 2024-02-01

27 papers 3,560 citations

331259 21 h-index 27 g-index

27 all docs

27 docs citations

27 times ranked

2794 citing authors

#	Article	IF	CITATIONS
1	Semiempirical method for examining asynchronicity in metal–oxido-mediated C–H bond activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
2	NRVS investigation of ascorbate peroxidase compound II: Observation of Iron(IV)oxo stretching. Journal of Inorganic Biochemistry, 2021, 224, 111548.	1.5	1
3	Different Kinetic Reactivities of Electrons in Distinct TiO ₂ Nanoparticle Trap States. Journal of Physical Chemistry C, 2021, 125, 680-690.	1.5	3
4	Ascorbate Peroxidase Compound II Is an Iron(IV) Oxo Species. Journal of the American Chemical Society, 2020, 142, 20419-20425.	6.6	20
5	Effects of Noncovalent Interactions on High-Spin Fe(IV)–Oxido Complexes. Journal of the American Chemical Society, 2020, 142, 11804-11817.	6.6	53
6	Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases. Inorganic Chemistry, 2020, 59, 6000-6009.	1.9	10
7	Reduction Potentials of P450 Compounds I and II: Insight into the Thermodynamics of C–H Bond Activation. Journal of the American Chemical Society, 2019, 141, 5504-5510.	6.6	51
8	An efficient, step-economical strategy for the design of functional metalloproteins. Nature Chemistry, 2019, 11, 434-441.	6.6	57
9	A new look at the role of thiolate ligation in cytochrome P450. Journal of Biological Inorganic Chemistry, 2017, 22, 209-220.	1.1	67
10	Characterization of a selenocysteine-ligated P450 compound I reveals direct link between electron donation and reactivity. Nature Chemistry, 2017, 9, 623-628.	6.6	62
11	Nitrogen Fixation via a Terminal Fe(IV) Nitride. Journal of the American Chemical Society, 2017, 139, 15312-15315.	6.6	120
12	Direct Observation of Oxygen Rebound with an Iron-Hydroxide Complex. Journal of the American Chemical Society, 2017, 139, 13640-13643.	6.6	82
13	Preparation of Compound I in P450 _{cam} : The Prototypical P450. Israel Journal of Chemistry, 2016, 56, 834-840.	1.0	21
14	Reactivity of an Fe ^{IV} -Oxo Complex with Protons and Oxidants. Journal of the American Chemical Society, 2016, 138, 13143-13146.	6.6	45
15	Spectroscopic Investigations of Catalase Compound II: Characterization of an Iron(IV) Hydroxide Intermediate in a Non-thiolate-Ligated Heme Enzyme. Journal of the American Chemical Society, 2016, 138, 16016-16023.	6.6	23
16	Significantly shorter Fe–S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase. Nature Chemistry, 2015, 7, 696-702.	6.6	92
17	Setting an Upper Limit on the Myoglobin Iron(IV)Hydroxide p <i>K</i> _a : Insight into Axial Ligand Tuning in Heme Protein Catalysis. Journal of the American Chemical Society, 2014, 136, 9124-9131.	6.6	57
18	Iron(IV)hydroxide p <i>K</i> _a and the Role of Thiolate Ligation in C–H Bond Activation by Cytochrome P450. Science, 2013, 342, 825-829.	6.0	283

#	Article	IF	CITATIONS
19	Reactive Intermediates in Cytochrome P450 Catalysis. Journal of Biological Chemistry, 2013, 288, 17074-17081.	1.6	165
20	Cytochrome P450 Compound I: Capture, Characterization, and C-H Bond Activation Kinetics. Science, 2010, 330, 933-937.	6.0	1,159
21	CH bond activation in heme proteins: the role of thiolate ligation in cytochrome P450. Current Opinion in Chemical Biology, 2009, 13, 84-88.	2.8	163
22	Evidence for Basic Ferryls in Cytochromes P450. Journal of the American Chemical Society, 2006, 128, 11471-11474.	6.6	93
23	Application of Badger's Rule to Heme and Non-Heme Ironâ^'Oxygen Bonds:Â An Examination of Ferryl Protonation States. Journal of the American Chemical Society, 2006, 128, 1902-1906.	6.6	126
24	Evidence for Two Ferryl Species in Chloroperoxidase Compound II. Journal of the American Chemical Society, 2006, 128, 6147-6153.	6.6	82
25	On the status of ferryl protonation. Journal of Inorganic Biochemistry, 2006, 100, 448-459.	1.5	121
26	Resonance Raman spectroscopy of chloroperoxidase compound II provides direct evidence for the existence of an iron(IV)-hydroxide. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12307-12310.	3.3	99
27	Oxoiron(IV) in Chloroperoxidase Compound II Is Basic: Implications for P450 Chemistry. Science, 2004, 304, 1653-1656.	6.0	477