Sooji Nam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1753060/publications.pdf

Version: 2024-02-01

236925 254184 1,866 47 25 43 citations h-index g-index papers 49 49 49 3176 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Printable Ultraâ€Flexible Fluorinated Organic–Inorganic Nanohybrid Sol–Gel Derived Gate Dielectrics for Highly Stable Organic Thinâ€Film Transistors and Other Practical Applications. Advanced Functional Materials, 2021, 31, 2009539.	14.9	27
2	Solvent-assisted strongly enhanced light-emitting electrochemiluminescent devices for lighting applications. RSC Advances, 2021, 11 , 4682 - 4687 .	3.6	3
3	The Potassiumâ€Assisted Pâ€Type Characteristics of Tin Oxide in Solutionâ€Processed Highâ€Performance Metal Oxide Thinâ€Film Transistors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100267.	1.8	1
4	Submicron Channel Length High-Performance Metal Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2021, 42, 1327-1330.	3.9	5
5	Organic/Inorganic Hybrid Thin-Film Encapsulation Using Inkjet Printing and PEALD for Industrial Large-Area Process Suitability and Flexible OLED Application. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55391-55402.	8.0	19
6	Direct Patterned Zinc-Tin-Oxide for Solution-Processed Thin-Film Transistors and Complementary Inverter through Electrohydrodynamic Jet Printing. Nanomaterials, 2020, 10, 1304.	4.1	7
7	Transparent phototransistor with high responsivity, sensitivity, and detectivity from heterojunction metal oxide semiconductors. Applied Physics Letters, 2020, 117, 111103.	3.3	7
8	25â€3: Faultâ€Tolerant Integrated Gate Driver for Flexible Displays. Digest of Technical Papers SID International Symposium, 2020, 51, 367-370.	0.3	0
9	Electrically stable polymer-only dielectrics for organic field-effect transistors with low gate leakage current. Organic Electronics, 2020, 85, 105828.	2.6	12
10	Cone-jet printing of aligned silver nanowire/poly(ethylene oxide) composite electrodes for organic thin-film transistors. Organic Electronics, 2019, 69, 190-199.	2.6	32
11	Graphene Oxide/Polystyrene Bilayer Gate Dielectrics for Low-Voltage Organic Field-Effect Transistors. Applied Sciences (Switzerland), 2019, 9, 2.	2.5	28
12	Direct printing of soluble acene crystal stripes by a programmed dip-coating process for organic field-effect transistor applications. Journal of Materials Chemistry C, 2018, 6, 799-807.	5.5	21
13	Double-heterojunction nanorod light-responsive LEDs for display applications. Science, 2017, 355, 616-619.	12.6	207
14	Enhanced gas barrier properties of graphene-TiO2 nanocomposites on plastic substrates assisted by UV photoreduction of graphene oxide. Organic Electronics, 2017, 48, 323-329.	2.6	11
15	The role of oxygen in dramatically enhancing the electrical properties of solution-processed Zn–Sn–O thin-film transistors. Journal of Materials Chemistry C, 2017, 5, 6521-6526.	5.5	14
16	Enhanced device lifetime of double-heterojunction nanorod light-emitting diodes. Nanoscale, 2017, 9, 6103-6110.	5.6	31
17	Tuning the Work Function of Printed Polymer Electrodes by Introducing a Fluorinated Polymer To Enhance the Operational Stability in Bottom-Contact Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12637-12646.	8.0	15
18	Highly-impermeable Al2O3/HfO2 moisture barrier films grown by low-temperature plasma-enhanced atomic layer deposition. Organic Electronics, 2017, 50, 296-303.	2.6	29

#	Article	IF	CITATIONS
19	Reduced water vapor transmission rates of low-temperature-processed and sol-gel-derived titanium oxide thin films on flexible substrates. Organic Electronics, 2016, 36, 133-139.	2.6	12
20	Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes. ACS Nano, 2016, 10, 4920-4925.	14.6	115
21	InZnO/AlSnZnInO Bilayer Oxide Thin-Film Transistors with High Mobility and High Uniformity. IEEE Electron Device Letters, 2016, , 1-1.	3.9	11
22	Spin Selfâ€Assembled Clay Nanocomposite Passivation Layers Made from a Photocrosslinkable Poly(vinyl) Tj ETQo Thinâ€Film Transistors. Chinese Journal of Chemistry, 2016, 34, 1103-1108.	ηΟ Ο Ο rgB 4.9	T /Overlock 4
23	Directly drawn ZnO semiconductors and MWCNT/PSS electrodes via electrohydrodynamic jet printing for use in thin-film transistors: The ideal combination for reliable device performances. Organic Electronics, 2016, 39, 272-278.	2.6	25
24	Solution-processed indium-free ZnO/SnO ₂ bilayer heterostructures as a low-temperature route to high-performance metal oxide thin-film transistors with excellent stabilities. Journal of Materials Chemistry C, 2016, 4, 11298-11304.	5.5	41
25	Optimization of Al ₂ O ₃ /TiO ₂ nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition. Physical Chemistry Chemical Physics, 2016, 18, 1042-1049.	2.8	38
26	Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters. ACS Applied Materials & District Sciences, 2016, 8, 5499-5508.	8.0	45
27	Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors. ACS Nano, 2015, 9, 5818-5824.	14.6	93
28	High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes. ACS Nano, 2015, 9, 878-885.	14.6	121
29	Solution-Processed Transistors Using Colloidal Nanocrystals with Composition-Matched Molecular "Solders†Approaching Single Crystal Mobility. Nano Letters, 2015, 15, 6309-6317.	9.1	88
30	A composite of a graphene oxide derivative as a novel sensing layer in an organic field-effect transistor. Journal of Materials Chemistry C, 2014, 2, 4539-4544.	5.5	32
31	Double-heterojunction nanorods. Nature Communications, 2014, 5, 3642.	12.8	85
32	Facile method for the environmentally friendly fabrication of reduced graphene oxide films assisted by a metal substrate and saline solution. RSC Advances, 2013, 3, 14286.	3.6	3
33	Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors. Nanoscale, 2013, 5, 11094.	5.6	24
34	High-Performance Triethylsilylethynyl Anthradithiophene Transistors Prepared without Solvent Vapor Annealing: The Effects of Self-Assembly during Dip-Coating. ACS Applied Materials & Dip: Interfaces, 2013, 5, 2146-2154.	8.0	32
35	Vacuum thermally evaporated polymeric zinc acrylate as an organic interlayer of organic/inorganic multilayer passivation for flexible organic thin-film transistors. Journal of Materials Chemistry, 2012, 22, 25395.	6.7	22
36	Effects of direct solvent exposure on the nanoscale morphologies and electrical characteristics of PCBM-based transistors and photovoltaics. Journal of Materials Chemistry, 2012, 22, 5543.	6.7	79

#	Article	lF	CITATIONS
37	High-Performance Low-Voltage Organic Field-Effect Transistors Prepared on Electro-Polished Aluminum Wires. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6-10.	8.0	17
38	Highly Crystalline Soluble Acene Crystal Arrays for Organic Transistors: Mechanism of Crystal Growth During Dipâ€Coating. Advanced Functional Materials, 2012, 22, 1005-1014.	14.9	160
39	High Tg cyclic olefin copolymer/Al2O3 bilayer gate dielectrics for flexible organic complementary circuits with low-voltage and air-stable operation. Journal of Materials Chemistry, 2011, 21, 12542.	6.7	28
40	Solvent-free solution processed passivation layer for improved long-term stability of organic field-effect transistors. Journal of Materials Chemistry, 2011, 21, 775-780.	6.7	30
41	High <i>T</i> _g Cyclic Olefin Copolymer Gate Dielectrics for <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i>)′â€Ditridecyl Perylene Diimide Based Fieldâ€Effect Transistors: Improving Performance and Stability with Thermal Treatment. Advanced Functional Materials, 2010, 20, 2611-2618.	14.9	69
42	All-organic solution-processed two-terminal transistors fabricated using the photoinduced p-channels. Applied Physics Letters, 2009, 94, 043303.	3.3	16
43	Effect of the hydrophobicity and thickness of polymer gate dielectrics on the hysteresis behavior of pentacene-based field-effect transistors. Journal of Applied Physics, 2009, 105, .	2.5	69
44	Photopatternable ultrathin gate dielectrics for low-voltage-operating organic circuits. Applied Physics Letters, 2009, 95, .	3.3	24
45	An inkjet-printed passivation layer based on a photocrosslinkable polymer for long-term stable pentacene field-effect transistors. Organic Electronics, 2009, 10, 67-72.	2.6	27

Hysteresis-free pentacene field-effect transistors and inverters containing poly(4-vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 382 Td (photos 47) Td 10 Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 382 Td (photos 47) Td 10 Tj ETQq0 0 0 rgBT /Overlock 10 Tj ETQq0 rgBT /Overlock 10 Tj ETQq0 0 rgBT /O

Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl) Tj ETQq $1\ 1\ 0.784314\ rgBT$ /Qverlock