
Heon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1752562/publications.pdf Version: 2024-02-01

HEONLEE

#	Article	IF	CITATIONS
1	Rapid degradation of methyl orange using hybrid advanced oxidation process and its synergistic effect. Journal of Industrial and Engineering Chemistry, 2016, 35, 205-210.	5.8	57
2	Preparation of nonaggregated silver nanoparticles by the liquid phase plasma reduction method. Journal of Materials Research, 2013, 28, 1105-1110.	2.6	53
3	Facile preparation of tungsten oxide doped TiO2 photocatalysts using liquid phase plasma process for enhanced degradation of diethyl phthalate. Chemical Engineering Journal, 2019, 377, 120087.	12.7	45
4	Facile synthesis of iron-ruthenium bimetallic oxide nanoparticles on carbon nanotube composites by liquid phase plasma method for supercapacitor. Korean Journal of Chemical Engineering, 2017, 34, 2993-2998.	2.7	42
5	Rapid photocatalytic degradation of nitrobenzene under the simultaneous illumination of UV and microwave radiation fields with a TiO2 ball catalyst. Catalysis Today, 2018, 307, 65-72.	4.4	42
6	Titanium dioxide modification with cobalt oxide nanoparticles for photocatalysis. Journal of Industrial and Engineering Chemistry, 2015, 32, 259-263.	5.8	41
7	Improving removal of 4-chlorophenol using a TiO2 photocatalytic system with microwave and ultraviolet radiation. Catalysis Today, 2017, 293-294, 15-22.	4.4	41
8	Photocatalyzed destruction of organic dyes using microwave/UV/O3/H2O2/TiO2 oxidation system. Catalysis Today, 2011, 164, 384-390.	4.4	38
9	Synthesis of manganese oxide/activated carbon composites for supercapacitor application using a liquid phase plasma reduction system. International Journal of Hydrogen Energy, 2015, 40, 754-759.	7.1	35
10	Photocatalytic reactions of 2,4-dichlorophenoxyacetic acid using a microwave-assisted photocatalysis system. Chemical Engineering Journal, 2015, 278, 259-264.	12.7	35
11	Fabrication of Gd-La codoped TiO2 composite via a liquid phase plasma method and its application as visible-light photocatalysts. Applied Surface Science, 2019, 471, 893-899.	6.1	33
12	Enhancement of Hydrogen Evolution from Water Photocatalysis Using Liquid Phase Plasma on Metal Oxide-Loaded Photocatalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 3659-3666.	6.7	32
13	Rapid destruction of the rhodamine B using TiO2photocatalyst in the liquid phase plasma. Chemistry Central Journal, 2013, 7, 156.	2.6	31
14	Preparation and Characterization of Copper Nanoparticles via the Liquid Phase Plasma Method. Current Nanoscience, 2014, 10, 7-10.	1.2	31
15	Photo-catalytic destruction of ethylene using microwave discharge electrodeless lamp. Korean Journal of Chemical Engineering, 2015, 32, 1188-1193.	2.7	23
16	Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications. Nanomaterials, 2018, 8, 190.	4.1	19
17	Degradation of dimethyl phthalate using a liquid phase plasma process with TiO2 photocatalysts. Environmental Research, 2019, 169, 256-260.	7.5	19
18	The photocatalytic destruction of cimetidine using microwave-assisted TiO2 photocatalysts hybrid system. Journal of Hazardous Materials, 2020, 391, 122568.	12.4	15

HEON LEE

#	Article	IF	CITATIONS
19	Degradation behaviors of naproxen by a hybrid TiO2 photocatalyst system with process components. Science of the Total Environment, 2020, 708, 135216.	8.0	14
20	Contribution of Dissolved Oxygen to Methyl Orange Decomposition by Liquid Phase Plasma Processes System. Ozone: Science and Engineering, 2014, 36, 244-248.	2.5	13
21	Facile precipitation of tin oxide nanoparticles on graphene sheet by liquid phase plasma method for enhanced electrochemical properties. Korean Journal of Chemical Engineering, 2018, 35, 750-756.	2.7	13
22	Characterization of Bimetallic Fe-Ru Oxide Nanoparticles Prepared by Liquid-Phase Plasma Method. Nanoscale Research Letters, 2016, 11, 344.	5.7	12
23	Application of Recycled Zero-Valent Iron Nanoparticle to the Treatment of Wastewater Containing Nitrobenzene. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	11
24	Effect of the surfactant on size of nickel nanoparticles generated by liquid-phase plasma method. International Journal of Precision Engineering and Manufacturing, 2015, 16, 1305-1310.	2.2	11
25	Assessment of photocatalytic performance of Fe/N-TiO2 photocatalysts prepared by liquid phase plasma process. Catalysis Today, 2020, 355, 435-442.	4.4	11
26	Photocatalytic hydrogen production using liquid phase plasma from ammonia water over metal ion-doped TiO2 photocatalysts. Catalysis Today, 2022, 397-399, 165-172.	4.4	11
27	Fe-decorated TiO2 powder photocatalysts with enhanced visible-light-driven degradation activities. Surface and Coatings Technology, 2016, 307, 1018-1023.	4.8	10
28	Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma. Journal of Environmental Management, 2017, 203, 880-887.	7.8	10
29	Preparation of silicon oxide–carbon composite from benzene and trimethoxyphenylsilane by a liquid phase plasma method for supercapacitor applications. Applied Surface Science, 2019, 481, 625-631.	6.1	9
30	Facile Preparation of Ni-Co Bimetallic Oxide/Activated Carbon Composites Using the Plasma in Liquid Process for Supercapacitor Electrode Applications. Nanomaterials, 2020, 10, 61.	4.1	8
31	Fabrication of Yb-doped TiO2 using liquid phase plasma process and its photocatalytic degradation activity of naproxen. Journal of Materials Science, 2020, 55, 9665-9675.	3.7	8
32	The Effect of Liquid Phase Plasma for Photocatalytic Degradation of Bromothymol Blue. Science of Advanced Materials, 2014, 6, 1627-1631.	0.7	8
33	Enhanced Electrochemical Performance of Carbon Nanotube with Nitrogen and Iron Using Liquid Phase Plasma Process for Supercapacitor Applications. International Journal of Molecular Sciences, 2018, 19, 3830.	4.1	6
34	Preparation of N and Eu doped TiO2 using plasma in liquid process and its photocatalytic degradation activity for diclofenac. Korean Journal of Chemical Engineering, 2022, 39, 2080-2088.	2.7	6
35	Assessing the photocatalytic activity of europium doped TiO2 using liquid phase plasma process on acetylsalicylic acid. Catalysis Today, 2020, , .	4.4	5
36	Bipolar Pulsed Electrical Discharge for Decomposition of Methylene Blue in Aqueous TiO ₂ Nanoparticle Dispersions. Journal of Nanoscience and Nanotechnology, 2013, 13, 1966-1969.	0.9	4

HEON LEE

#	Article	IF	CITATIONS
37	Decomposition of naproxen by plasma in liquid process with TiO2 photocatslysts and hydrogen peroxide. Environmental Research, 2021, 195, 110899.	7.5	4
38	Photocatalytic Properties of Titanate Nanotube Powders Prepared by Alkaline Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2011, 11, 7357-7360.	0.9	3
39	Assessment of Degradation Behavior for Acetylsalicylic Acid Using a Plasma in Liquid Process. Catalysts, 2019, 9, 965.	3.5	3
40	Rapid decomposition of chloroform by a liquid phase plasma reaction with titanium dioxide and hydrogen peroxide. Catalysis Today, 2020, 352, 54-59.	4.4	3
41	Diclofenac degradation properties of a La-doped visible light-responsive TiO2 photocatalyst. Sustainable Chemistry and Pharmacy, 2022, 25, 100564.	3.3	3
42	Facile Synthesis of Chromium Oxide on Activated Carbon Electrodes for Electrochemical Capacitor Application. Journal of Nanoscience and Nanotechnology, 2019, 19, 1078-1081.	0.9	2
43	Preparation and Characterization of Silver-Iron Bimetallic Nanoparticles on Activated Carbon Using Plasma in Liquid Process. Nanomaterials, 2021, 11, 3385.	4.1	2
44	Precipitation of Manganese and Nickel Nanoparticles on an Activated Carbon Powder for Electrochemical Capacitor Applications. Journal of Nanoscience and Nanotechnology, 2016, 16, 11460-11464.	0.9	1
45	Precipitation of Tin Oxide Nanoparticles on Graphene Sheets Using a Liquid Phase Plasma Process. Journal of Nanoscience and Nanotechnology, 2017, 17, 4288-4291.	0.9	1
46	Preparation and Characterization of Bimetallic Fe–Ni Oxide Nanoparticles Using Liquid Phase Plasma Process. Journal of Nanoscience and Nanotechnology, 2019, 19, 2362-2365.	0.9	1
47	Effect of constituent processes and conditions of the hybrid TiO2 photocatalytic system on 1,4-dichlorobenzene degradation. Catalysis Today, 2020, 348, 270-276.	4.4	1
48	Acetaldehyde Adsorption Characteristics of Ag/ACF Composite Prepared by Liquid Phase Plasma Method. Nanomaterials, 2021, 11, 2344.	4.1	1
49	Facile Synthesis and Characterization of Zinc Oxide Nanoparticle on Activated Carbon Using Liquid Phase Plasma Method. Journal of Nanoscience and Nanotechnology, 2018, 18, 2181-2184.	0.9	0
50	Precipitation of Nickel Oxide on TiO ₂ Photocatalysts for Enhanced Visible Degradation Activity. Journal of Nanoscience and Nanotechnology, 2018, 18, 1279-1282.	0.9	0
51	Fabrication of Molybdenum Oxide/Activated Carbon Using Liquid Phase Plasma Reaction and Its Electrochemical Performance. Journal of Nanoscience and Nanotechnology, 2020, 20, 5579-5582.	0.9	Ο