## Warren Grigsby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1752339/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Chemical Imaging of the Polylactic Acid â^ Wood Adhesion Interface of Bonded Veneer Products.<br>Fibers, 2022, 10, 17.                                                                                                                                           | 4.0 | 2         |
| 2  | Understanding the effects of ionic liquids and antisolvent addition on the extraction and recovery of <i>Pinus radiata</i> bark components. Journal of Wood Chemistry and Technology, 2022, 42, 305-317.                                                         | 1.7 | 1         |
| 3  | Understanding the PLA–Wood Adhesion Interface for the Development of PLA-Bonded Softwood<br>Laminates. Fibers, 2022, 10, 51.                                                                                                                                     | 4.0 | 2         |
| 4  | Production of amino-functionalised condensed tannins via a single step conversion using supercritical fluid processing. Journal of Wood Chemistry and Technology, 2021, 41, 65-71.                                                                               | 1.7 | 3         |
| 5  | Combination and processing keratin with lignin as biocomposite materials for additive manufacturing technology. Acta Biomaterialia, 2020, 104, 95-103.                                                                                                           | 8.3 | 39        |
| 6  | Bonding Wood Veneer with Biobased Poly(Lactic Acid) Thermoplastic Polyesters: Potential<br>Applications for Consolidated Wood Veneer and Overlay Products. Fibers, 2020, 8, 50.                                                                                  | 4.0 | 5         |
| 7  | A chemometric approach for the segregation of bark biomass based on tree height and geographic<br>location. Journal of Wood Chemistry and Technology, 2020, 40, 361-369.                                                                                         | 1.7 | 3         |
| 8  | From nanocellulose to wood particles: A review of particle size vs. the properties of plastic composites reinforced with cellulose-based entities. BioResources, 2020, 15, 2030-2081.                                                                            | 1.0 | 22        |
| 9  | X-ray methods to observe and quantify adhesive penetration into wood. Journal of Materials Science, 2019, 54, 705-718.                                                                                                                                           | 3.7 | 28        |
| 10 | Analyzing the UF resin distribution in particleboards by confocal laser scanning microscopy.<br>Composites Part A: Applied Science and Manufacturing, 2019, 125, 105529.                                                                                         | 7.6 | 6         |
| 11 | Using Renewables in Panelboard Resins to Influence Volatile Organic Compound Emissions from Panels. Journal of Wood Chemistry and Technology, 2019, 39, 166-177.                                                                                                 | 1.7 | 6         |
| 12 | Optimizing Chemical Wood Modification with Oligomeric Lactic Acid by Screening of Processing Conditions. Journal of Wood Chemistry and Technology, 2019, 39, 385-398.                                                                                            | 1.7 | 9         |
| 13 | Quantitative Assessment and Visualisation of the Wood and Poly(Lactic Acid) Interface in Sandwich<br>Laminate Composites. Fibers, 2019, 7, 15.                                                                                                                   | 4.0 | 5         |
| 14 | Volatile organic compounds (VOCs) from lauan ( <b> <i>Shorea</i> </b> ssp.) plyboard prepared with<br>kraft lignin, soy flour, gluten meal and tannin: emissions during hot pressing and from panels as a<br>function of time. Holzforschung, 2019, 73, 305-311. | 1.9 | 1         |
| 15 | Generation of Spherical Cellulose Nanoparticles from Ionic Liquid Processing via Novel Nonsolvent<br>Addition and Drying. Advances in Materials Science and Engineering, 2019, 2019, 1-6.                                                                        | 1.8 | 18        |
| 16 | Understanding the development of interfacial bonding within PLA/wood-based thermoplastic sandwich composites. Industrial Crops and Products, 2019, 127, 129-134.                                                                                                 | 5.2 | 40        |
| 17 | A new methodology for rapidly assessing interfacial bonding within fibre-reinforced thermoplastic composites. International Journal of Adhesion and Adhesives, 2019, 89, 66-71.                                                                                  | 2.9 | 14        |
| 18 | Applying the Protective Role of Condensed Tannins to Acrylic-based Surface Coatings Exposed to Accelerated Weathering. Journal of Polymers and the Environment, 2018, 26, 895-905.                                                                               | 5.0 | 20        |

WARREN GRIGSBY

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | One-pot solvent-free synthesis and characterisation of hydroxypropylated polyflavonoid compounds.<br>Industrial Crops and Products, 2018, 111, 529-535.                                                                            | 5.2 | 6         |
| 20 | Photooxidative stability provided by condensed tannin additives in acrylic-based surface coatings on exterior exposure. Journal of Coatings Technology Research, 2018, 15, 1273-1282.                                              | 2.5 | 11        |
| 21 | Thermal stability of processed PVC/bamboo blends: effect of compounding procedures. European<br>Journal of Wood and Wood Products, 2017, 75, 147-159.                                                                              | 2.9 | 14        |
| 22 | Simulating the protective role of bark proanthocyanidins in surface coatings: Unexpected beneficial photo-stabilisation of exposed timber surfaces. Progress in Organic Coatings, 2017, 110, 55-61.                                | 3.9 | 19        |
| 23 | Molecular weight fractionation of high polydispersity native celluloses. Cellulose, 2017, 24, 5261-5265.                                                                                                                           | 4.9 | 5         |
| 24 | Rheological behaviors exhibited by soy protein systems under dynamic aqueous environments. Journal<br>of Applied Polymer Science, 2017, 134, 45513.                                                                                | 2.6 | 4         |
| 25 | Yes, we can make money out of lignin and other bio-based resources. Industrial Crops and Products, 2017, 106, 74-85.                                                                                                               | 5.2 | 109       |
| 26 | Flexural Properties of PVC/Bamboo Composites under Static and Dynamic-Thermal Conditions: Effects of Composition and Water Absorption. International Journal of Polymer Science, 2017, 2017, 1-8.                                  | 2.7 | 18        |
| 27 | Modifying biodegradable plastics with additives based on condensed tannin esters. Journal of Applied<br>Polymer Science, 2015, 132, .                                                                                              | 2.6 | 16        |
| 28 | Two-Dimensional FTIR as a Tool to Study the Chemical Interactions within Cellulose-Ionic Liquid Solutions. International Journal of Polymer Science, 2015, 2015, 1-9.                                                              | 2.7 | 15        |
| 29 | Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study<br>Molecular-Scale Interactions of Phenol–Formaldehyde in Wood Cell Walls. ACS Applied Materials<br>& Interfaces, 2015, 7, 6584-6589. | 8.0 | 70        |
| 30 | Evaluating The Extent of Bio-Polyester Polymerization in Solid Wood by Thermogravimetric Analysis.<br>Journal of Wood Chemistry and Technology, 2015, 35, 325-336.                                                                 | 1.7 | 16        |
| 31 | Labile Extractable Urea-Formaldehyde Resin Components from Medium-Density Fiberboard*. Forest<br>Products Journal, 2015, 65, 15-19.                                                                                                | 0.4 | 3         |
| 32 | Wood as Polar Size Exclusion Chromatography Media: Implications to Adhesive Performance*. Forest<br>Products Journal, 2015, 65, 9-14.                                                                                              | 0.4 | 6         |
| 33 | Investigating the Extent of Urea Formaldehyde Resin Cure in Medium Density Fiberboard: Resin<br>Extractability and Fiber Effects. Journal of Wood Chemistry and Technology, 2014, 34, 225-238.                                     | 1.7 | 18        |
| 34 | Investigating the Viscoelastic Properties and Mechanical Performance of Wood Modifi ed by<br>Biopolyester Treatments. Journal of Renewable Materials, 2014, 2, 291-305.                                                            | 2.2 | 5         |
| 35 | Evaluating Poly(lactic acid) Fiber Reinforcement with Modified Tannins. Macromolecular Materials and Engineering, 2014, 299, 368-378.                                                                                              | 3.6 | 18        |
| 36 | Rubber-Like Materials Prepared from Copolymerization of Tannin Fatty Acid Conjugates and Vegetable<br>Oils. Macromolecular Materials and Engineering, 2014, 299, 65-74.                                                            | 3.6 | 5         |

WARREN GRIGSBY

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Evaluating Modified Tannin Esters as Functional Additives in Polypropylene and Biodegradable<br>Aliphatic Polyester. Macromolecular Materials and Engineering, 2014, 299, 1251-1258.                             | 3.6 | 27        |
| 38 | Investigating the extent of urea formaldehyde resin cure in medium density fibreboard:<br>Characterisation of extractable resin components. International Journal of Adhesion and Adhesives,<br>2014, 50, 50-56. | 2.9 | 12        |
| 39 | Life Cycle Assessment of Bio- and Petro-Chemical Adhesives Used in Fiberboard Production. Journal of Polymers and the Environment, 2014, 22, 537-544.                                                            | 5.0 | 39        |
| 40 | Characterisation of pore size distributions in variously dried Pinus radiata: analysis by thermoporosimetry. Wood Science and Technology, 2013, 47, 737-747.                                                     | 3.2 | 26        |
| 41 | Vegetable oil thermosets reinforced by tannin–lipid formulations. Acta Biomaterialia, 2013, 9,<br>5226-5233.                                                                                                     | 8.3 | 19        |
| 42 | Esterification of Condensed Tannins and Their Impact on the Properties of Poly(Lactic Acid). Polymers, 2013, 5, 344-360.                                                                                         | 4.5 | 50        |
| 43 | Synthesis and characterization of flavonoid laurate esters by transesterification. Journal of Applied Polymer Science, 2013, 129, 181-186.                                                                       | 2.6 | 22        |
| 44 | Production, composition and toxicology studies of Enzogenol® Pinus radiata bark extract. Food and Chemical Toxicology, 2012, 50, 4316-4324.                                                                      | 3.6 | 20        |
| 45 | Fundamentals of MDF Panel Dimensional Stability: Analysis of MDF High-Density Layers. Journal of<br>Wood Chemistry and Technology, 2012, 32, 149-164.                                                            | 1.7 | 8         |
| 46 | The interactions between wax and UF resin in medium density fibreboard. European Journal of Wood and Wood Products, 2012, 70, 507-517.                                                                           | 2.9 | 16        |
| 47 | Resin and wax distribution and mobility during medium density fibreboard manufacture. European<br>Journal of Wood and Wood Products, 2012, 70, 337-348.                                                          | 2.9 | 17        |
| 48 | Synthesis, characterization, and thermal behaviors of tannin stearates prepared from quebracho and pine bark extracts. Journal of Applied Polymer Science, 2010, 117, NA-NA.                                     | 2.6 | 21        |
| 49 | Thermal Degradation of Condensed Tannins from Radiata Pine Bark. Journal of Wood Chemistry and Technology, 2009, 29, 305-321.                                                                                    | 1.7 | 74        |
| 50 | Chemical Imaging of the Spatial Distribution and Interactions of Tannin Dispersal in Bioplastic Systems. Advanced Materials Research, 2007, 29-30, 173-176.                                                      | 0.3 | 5         |
| 51 | NMR Estimation of Extractables from Bark: Analysis Method for Quantifying Tannin Extraction from Bark. Journal of Wood Chemistry and Technology, 2003, 23, 179-195.                                              | 1.7 | 15        |