Paolo Gardonio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/175224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design tool for elementary shunts connected to piezoelectric patches set to control multi-resonant flexural vibrations. Journal of Sound and Vibration, 2022, 520, 116554.	3.9	11
2	Extremum seeking online tuning of a piezoelectric vibration absorber based on the maximisation of the shunt electric power absorption. Mechanical Systems and Signal Processing, 2022, 176, 109171.	8.0	6
3	Piezoelectric patch vibration control unit connected to a self-tuning RL-shunt set to maximise electric power absorption. Journal of Sound and Vibration, 2022, 536, 117154.	3.9	7
4	Audio quality level vs. signal-to-interference ratio in isofrequency FM broadcasting. Annales Des Telecommunications/Annals of Telecommunications, 2021, 76, 801-811.	2.5	2
5	Tuning of a shunted electromagnetic vibration absorber based on the maximisation of the electrical power dissipated. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 2570-2586.	2.1	2
6	Semi-active vibration control unit tuned to maximise electric power dissipation. Journal of Sound and Vibration, 2021, 499, 116000.	3.9	13
7	Active vibration control unit with a flywheel inertial actuator. Journal of Sound and Vibration, 2020, 464, 114987.	3.9	19
8	Comparison of smart panels for tonal and broadband vibration and sound transmission active control. International Journal of Smart and Nano Materials, 2020, 11, 431-484.	4.2	5
9	Modular Vibration Control Unit Formed by an Electromagnetic Proof-Mass Transducer and Sweeping Resistive–Inductive Shunt. Journal of Vibration and Acoustics, Transactions of the ASME, 2020, 142, .	1.6	10
10	Panel with self-tuning shunted piezoelectric patches for broadband flexural vibration control. Mechanical Systems and Signal Processing, 2019, 134, 106299.	8.0	22
11	Switching and sweeping vibration absorbers: Theory and experimental validation. Automatica, 2018, 93, 290-301.	5.0	6
12	Flywheel piezoelectric actuator for active vibration control applications. , 2018, , .		0
13	Velocity feedback control with a flywheel proof mass actuator. Journal of Sound and Vibration, 2017, 402, 31-50.	3.9	15
14	Experimental implementation of switching and sweeping tuneable vibration absorbers for broadband vibration control. Journal of Sound and Vibration, 2015, 334, 164-177.	3.9	12
15	Switching Gains for Semiactive Damping via Nonconvex Lyapunov Functions. IEEE Transactions on Control Systems Technology, 2014, 22, 721-728.	5.2	6
16	Optimisation of a velocity feedback controller to minimise kinetic energy and maximise power dissipation. Journal of Sound and Vibration, 2014, 333, 4405-4414.	3.9	23
17	Integrated tuned vibration absorbers: A theoretical study. Journal of the Acoustical Society of America, 2013, 134, 3631-3644.	1.1	19
18	Boundary Layer Noise – Part 2: Interior Noise Radiation and Control. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2013, , 379-448.	0.6	4

PAOLO GARDONIO

#	Article	IF	CITATIONS
19	Constant and switching gains in semi-active damping of vibrating structures. International Journal of Control, 2012, 85, 1886-1897.	1.9	20
20	Experimental implementation of a self-tuning control system for decentralised velocity feedback. Journal of Sound and Vibration, 2012, 331, 1-14.	3.9	22
21	Self-tuning control systems of decentralised velocity feedback. Journal of Sound and Vibration, 2010, 329, 2738-2750.	3.9	36
22	Double panel with skyhook active damping control units for control of sound radiation. Journal of the Acoustical Society of America, 2010, 128, 1108.	1.1	10
23	A comparison of decentralized, distributed, and centralized vibro-acoustic control. Journal of the Acoustical Society of America, 2010, 128, 2798-2806.	1.1	17
24	A smart panel with active damping wedges along the perimeter. Smart Materials and Structures, 2010, 19, 065033.	3.5	5
25	Downscaling of proof mass electrodynamic actuators for decentralized velocity feedback control on a panel. Smart Materials and Structures, 2010, 19, 025004.	3.5	11
26	Active damping control unit using a small scale proof mass electrodynamic actuator. Journal of the Acoustical Society of America, 2008, 124, 886-897.	1.1	33
27	Smart panel with active damping units. Implementation of decentralized control. Journal of the Acoustical Society of America, 2008, 124, 898-910.	1.1	23
28	Active Vibration Damping Using an Inertial, Electrodynamic Actuator (DETC2005-84632). Journal of Vibration and Acoustics, Transactions of the ASME, 2007, 129, 39-47.	1.6	32
29	Sound and Structural Vibration—Radiation, Transmission and Response. Noise Control Engineering Journal, 2007, 55, 373.	0.3	152
30	Active vibration control using an inertial actuator with internal damping. Journal of the Acoustical Society of America, 2006, 119, 2131-2140.	1.1	43
31	Modal response of a beam with a sensor–actuator pair for the implementation of velocity feedback control. Journal of Sound and Vibration, 2005, 284, 1-22.	3.9	42
32	Smart panels with velocity feedback control systems using triangularly shaped strain actuators. Journal of the Acoustical Society of America, 2005, 117, 2046-2064.	1.1	33
33	Smart panels for active structural acoustic control. Smart Materials and Structures, 2004, 13, 1314-1336.	3.5	43
34	Active vibroacoustic control with multiple local feedback loops. Journal of the Acoustical Society of America, 2002, 111, 908-915.	1.1	129
35	Model for Active Control of Flow-Induced Noise Transmitted Through Double Partitions. AIAA Journal, 2002, 40, 1113-1121.	2.6	38
36	Coupling analysis of a matched piezoelectric sensor and actuator pair for vibration control of a smart beam. Journal of the Acoustical Society of America, 2002, 111, 2715-2726.	1.1	24

#	Article	IF	CITATIONS
37	Volume velocity vibration control of a smart panel using a uniform force actuator and an accelerometer array. Smart Materials and Structures, 2002, 11, 863-873.	3.5	21
38	Review of Active Techniques for Aerospace Vibro-Acoustic Control. Journal of Aircraft, 2002, 39, 206-214.	2.4	74
39	Active Control of the Flow-Induced Noise Transmitted Through a Panel. AIAA Journal, 2001, 39, 1860-1867.	2.6	37