Pedro O Soares

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1752157/pedro-o-soares-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4 papers 207 pext. papers 207 ext. citations 131 at h-index g-index g-index 207 avg, IF L-index

#	Paper Control of the	IF	Citations
4	Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. <i>Biotechnology Advances</i> , 2021 , 47, 107697	17.8	26
3	Aqueous solutions of deep eutectic systems as reaction media for the saccharification and fermentation of hardwood xylan into xylitol. <i>Bioresource Technology</i> , 2020 , 311, 123524	11	18
2	Engineered for lignocellulosic valorization: a review and perspectives on bioethanol production. <i>Bioengineered</i> , 2020 , 11, 883-903	5.7	20
1	Xylose fermentation efficiency of industrial yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. <i>Biotechnology for Biofuels</i> , 2019 , 12, 20	7.8	67