Alberto Villa

List of Publications by Citations

Source: https://exaly.com/author-pdf/1752128/alberto-villa-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

187
papers
6,419
citations
46
h-index
g-index

74
g-index

5.8
ext. papers
ext. citations
avg, IF
L-index

#	Paper	IF	Citations
187	Covalent triazine framework as catalytic support for liquid phase reaction. <i>Nano Letters</i> , 2010 , 10, 537-	41 1.5	320
186	Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. <i>Journal of Catalysis</i> , 2006 , 244, 113-121	7.3	254
185	Glycerol oxidation using gold-containing catalysts. <i>Accounts of Chemical Research</i> , 2015 , 48, 1403-12	24.3	220
184	Bimetallic Gold/Palladium Catalysts: Correlation between Nanostructure and Synergistic Effects. Journal of Physical Chemistry C, 2008 , 112, 8617-8622	3.8	203
183	Selective oxidation of glycerol under acidic conditions using gold catalysts. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4499-502	16.4	200
182	Effect of Particle Size on Monometallic and Bimetallic (Au,Pd)/C on the Liquid Phase Oxidation of Glycerol. <i>Catalysis Letters</i> , 2006 , 108, 147-153	2.8	173
181	Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. <i>ChemSusChem</i> , 2013 , 6, 609-12	8.3	168
180	Au P d/AC as catalysts for alcohol oxidation: Effect of reaction parameters on catalytic activity and selectivity. <i>Applied Catalysis A: General</i> , 2009 , 364, 221-228	5.1	135
179	Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. <i>Chemical Communications</i> , 2006 , 1956-8	5.8	132
178	Untangling the Role of the Capping Agent in Nanocatalysis: Recent Advances and Perspectives. <i>Catalysts</i> , 2016 , 6, 185	4	126
177	Pd on carbon nanotubes for liquid phase alcohol oxidation. <i>Catalysis Today</i> , 2010 , 150, 8-15	5.3	124
176	Gold on titania: Effect of preparation method in the liquid phase oxidation. <i>Applied Catalysis A: General</i> , 2006 , 311, 185-192	5.1	112
175	Characterisation of gold catalysts. <i>Chemical Society Reviews</i> , 2016 , 45, 4953-94	58.5	107
174	Defect-mediated functionalization of carbon nanotubes as a route to design single-site basic heterogeneous catalysts for biomass conversion. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6543-6	16.4	106
173	Triazine-based polymers as nanostructured supports for the liquid-phase oxidation of alcohols. <i>Chemistry - A European Journal</i> , 2011 , 17, 1052-7	4.8	101
172	New challenges in gold catalysis: bimetallic systems. <i>Catalysis Science and Technology</i> , 2015 , 5, 55-68	5.5	96
171	Gold colloids: from quasi-homogeneous to heterogeneous catalytic systems. <i>Accounts of Chemical Research</i> , 2014 , 47, 855-63	24.3	93

(2012-2013)

170	Sol immobilization technique: a delicate balance between activity, selectivity and stability of gold catalysts. <i>Catalysis Science and Technology</i> , 2013 , 3, 3036	5.5	92	
169	Au on MgAl2O4 spinels: The effect of support surface properties in glycerol oxidation. <i>Journal of Catalysis</i> , 2010 , 275, 108-116	7:3	90	
168	Bimetallic gold/palladium catalysts for the selective liquid phase oxidation of glycerol. <i>Catalysis Letters</i> , 2007 , 115, 133-136	2.8	89	
167	Tandem Site- and Size-Controlled Pd Nanoparticles for the Directed Hydrogenation of Furfural. <i>ACS Catalysis</i> , 2017 , 7, 2266-2274	13.1	86	
166	Gold Sols as Catalysts for Glycerol Oxidation: The Role of Stabilizer. <i>ChemCatChem</i> , 2009 , 1, 510-514	5.2	86	
165	Synergetic effect of platinum or palladium on gold catalyst in the selective oxidation of D-sorbitol. <i>Catalysis Letters</i> , 2005 , 99, 181-185	2.8	84	
164	Investigation on the behaviour of Pt(0)/carbon and Pt(0),Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water. <i>Journal of Molecular Catalysis A</i> , 2006 , 256, 21-28		82	
163	Single-phase gold/palladium catalyst: The nature of synergistic effect. <i>Catalysis Today</i> , 2007 , 122, 386-3	993	77	
162	Pd nanoparticles supported on N-doped nanocarbon for the direct synthesis of H2O2 from H2 and O2. <i>Catalysis Today</i> , 2010 , 157, 280-285	5.3	76	
161	Gold catalyzed liquid phase oxidation of alcohol: the issue of selectivity. <i>Faraday Discussions</i> , 2011 , 152, 353-65; discussion 393-413	3.6	72	
160	Benzyl Alcohol Oxidation on Carbon-Supported Pd Nanoparticles: Elucidating the Reaction Mechanism. <i>ChemCatChem</i> , 2014 , 6, 3464-3473	5.2	70	
159	Nitrogen functionalized carbon nanostructures supported Pd and Au P d NPs as catalyst for alcohols oxidation. <i>Catalysis Today</i> , 2010 , 157, 89-93	5.3	70	
158	Tailoring the selectivity of glycerol oxidation by tuning the acidBase properties of Au catalysts. <i>Catalysis Science and Technology</i> , 2015 , 5, 1126-1132	5.5	65	
157	Gold on carbon: one billion catalysts under a single label. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 2969-78	3.6	65	
156	Tailoring the morphology of Pd nanoparticles on CNTs by nitrogen and oxygen functionalization. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 10523-32	3.6	64	
155	Effect of gold addition on Pt and Pd catalysts in liquid phase oxidations. <i>Topics in Catalysis</i> , 2007 , 44, 319-324	2.3	58	
154	Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon. <i>Catalysis Today</i> , 2007 , 122, 248-253	5.3	56	
153	Influence of periodic nitrogen functionality on the selective oxidation of alcohols. <i>Chemistry - an Asian Journal</i> , 2012 , 7, 387-93	4.5	55	

152	Au on Nanosized NiO: A Cooperative Effect between Au and Nanosized NiO in the Base-Free Alcohol Oxidation. <i>ChemCatChem</i> , 2011 , 3, 1612-1618	5.2	52
151	CO2 photoreduction at high pressure to both gas and liquid products over titanium dioxide. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 386-391	21.8	51
150	Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed Evalerolactone production. <i>ChemSusChem</i> , 2015 , 8, 2520-8	8.3	51
149	Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides. <i>Chemical Communications</i> , 2009 , 4405-7	5.8	51
148	Transesterification of triglycerides using nitrogen-functionalized carbon nanotubes. <i>ChemSusChem</i> , 2010 , 3, 241-5	8.3	51
147	Liquid Phase Oxidation of Glycerol Using a Single Phase (Au P d) Alloy Supported on Activated Carbon: Effect of Reaction Conditions. <i>Catalysis Letters</i> , 2009 , 133, 334-340	2.8	50
146	Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 2183-9	3.6	49
145	The Art of Manufacturing Gold Catalysts. <i>Catalysts</i> , 2012 , 2, 24-37	4	48
144	Selective Oxidation of Glycerol under Acidic Conditions Using Gold Catalysts. <i>Angewandte Chemie</i> , 2010 , 122, 4601-4604	3.6	48
143	Carbon-Supported Gold Nanocatalysts: Shape Effect in the Selective Glycerol Oxidation. <i>ChemCatChem</i> , 2013 , 5, 2717-2723	5.2	47
142	In situ formation of Au-Pd bimetallic active sites promoting the physically mixed monometallic catalysts in the liquid-phase oxidation of alcohols. <i>Chemistry - A European Journal</i> , 2010 , 16, 10007-13	4.8	47
141	Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies. <i>Topics in Catalysis</i> , 2018 , 61, 254-266	2.3	46
140	Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol. <i>ACS Catalysis</i> , 2015 , 5, 4377-4384	13.1	44
139	Effects of Au nanoparticles on TiO2 in the photocatalytic degradation of an azo dye 2007 , 40, 154-160		43
138	CO2 photoconversion to fuels under high pressure: effect of TiO2 phase and of unconventional reaction conditions. <i>Catalysis Science and Technology</i> , 2015 , 5, 4481-4487	5.5	42
137	Selectivity Control in Palladium-Catalyzed Alcohol Oxidation through Selective Blocking of Active Sites. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 14027-14033	3.8	42
136	Ru-modified Au catalysts supported on cerialirconia for the selective oxidation of glycerol. <i>Catalysis Today</i> , 2015 , 253, 178-189	5.3	41
135	Multifunctionality of Crystalline MoV(TeNb) M1 Oxide Catalysts in Selective Oxidation of Propane and Benzyl Alcohol. <i>ACS Catalysis</i> , 2013 , 3, 1103-1113	13.1	40

134	Au NPs on anionic-exchange resin as catalyst for polyols oxidation in batch and fixed bed reactor. <i>Applied Catalysis B: Environmental</i> , 2010 , 96, 541-547	21.8	39	
133	Material science for the support design: a powerful challenge for catalysis. <i>Catalysis Science and Technology</i> , 2012 , 2, 673	5.5	38	
132	Bismuth as a modifier of AuPd catalyst: Enhancing selectivity in alcohol oxidation by suppressing parallel reaction. <i>Journal of Catalysis</i> , 2012 , 292, 73-80	7.3	38	
131	NiO as a peculiar support for metal nanoparticles in polyols oxidation. <i>Catalysis Science and Technology</i> , 2013 , 3, 394-399	5.5	38	
130	Microkinetic Modeling of Benzyl Alcohol Oxidation on Carbon-Supported Palladium Nanoparticles. <i>ChemCatChem</i> , 2016 , 8, 2482-2491	5.2	36	
129	Selective Benzyl Alcohol Oxidation over Pd Catalysts. <i>Catalysts</i> , 2018 , 8, 431	4	36	
128	Bismuth modified Au-Pt bimetallic catalysts for dihydroxyacetone production. <i>Catalysis Today</i> , 2015 , 249, 103-108	5.3	35	
127	Effect of the preparation method of supported Au nanoparticles in the liquid phase oxidation of glycerol. <i>Applied Catalysis A: General</i> , 2016 , 514, 267-275	5.1	35	
126	Nitrite reduction over Pd supported CNFs: Metal particle size effect on selectivity. <i>Catalysis Today</i> , 2012 , 183, 119-123	5.3	34	
125	Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF. <i>Journal of Energy Chemistry</i> , 2013 , 22, 305-311	12	34	
124	Understanding Heteroatom-Mediated MetalBupport Interactions in Functionalized Carbons: A Perspective Review. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 1159	2.6	34	
123	Gold Catalysts for the Selective Oxidation of Biomass-Derived Products. <i>ChemCatChem</i> , 2019 , 11, 309-3	32532	31	
122	Molecular Origin of the Selectivity Differences between Palladium and Gold P alladium in Benzyl Alcohol Oxidation: Different Oxygen Adsorption Properties. <i>ChemCatChem</i> , 2017 , 9, 253-257	5.2	30	
121	AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditions. <i>Green Chemistry</i> , 2019 , 21, 4090-4099	10	29	
120	Size, nanostructure, and composition dependence of bimetallic Au P d supported on ceria Z irconia mixed oxide catalysts for selective oxidation of benzyl alcohol. <i>Journal of Catalysis</i> , 2019 , 375, 44-55	7.3	29	
119	Metal-Free Oxidation of Glycerol over Nitrogen-Containing Carbon Nanotubes. <i>ChemSusChem</i> , 2017 , 10, 3030-3034	8.3	29	
118	Influence of pretreatment atmospheres on the performance of bimetallic Au-Pd supported on ceria-zirconia mixed oxide catalysts for benzyl alcohol oxidation. <i>Applied Catalysis A: General</i> , 2016 , 525, 145-157	5.1	27	
117	A novel high-pressure photoreactor for CO2 photoconversion to fuels. <i>RSC Advances</i> , 2014 , 4, 28883-28	38;85	26	

116	Selective Oxidation of Raw Glycerol Using Supported AuPd Nanoparticles. <i>Catalysts</i> , 2015 , 5, 131-144	4	25
115	Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles. <i>Chemistry of Materials</i> , 2013 , 25, 4936-4945	9.6	25
114	High Pressure Photoreduction of CO2: Effect of Catalyst Formulation, Hole Scavenger Addition and Operating Conditions. <i>Catalysts</i> , 2018 , 8, 430	4	25
113	PdHx Entrapped in a Covalent Triazine Framework Modulates Selectivity in Glycerol Oxidation. <i>ChemCatChem</i> , 2015 , 7, 2149-2154	5.2	24
112	Hydrogen production from formic acid decomposition in the liquid phase using Pd nanoparticles supported on CNFs with different surface properties. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 2705-2716	5.8	24
111	Carbons from second generation biomass as sustainable supports for catalytic systems. <i>Catalysis Today</i> , 2018 , 301, 239-243	5.3	22
110	Ru modified Au catalysts for the selective oxidation of aliphatic alcohols. <i>Catalysis Science and Technology</i> , 2011 , 1, 1624	5.5	22
109	Identifying the Role of N-Heteroatom Location in the Activity of Metal Catalysts for Alcohol Oxidation. <i>ChemCatChem</i> , 2015 , 7, 1338-1346	5.2	21
108	Hybrid Au/CuO Nanoparticles: Effect of Structural Features for Selective Benzyl Alcohol Oxidation. Journal of Physical Chemistry C, 2019 , 123, 2864-2871	3.8	21
107	An investigation on AuPt and AuPt-Bi on granular carbon as catalysts for the oxidation of glycerol under continuous flow conditions. <i>Catalysis Today</i> , 2018 , 308, 50-57	5.3	20
106	Metal nanoparticles on carbon based supports: The effect of the protective agent removal. <i>Catalysis Today</i> , 2016 , 278, 91-96	5.3	20
105	Tuning hydrophilic properties of carbon nanotubes: A challenge for enhancing selectivity in Pd catalyzed alcohol oxidation. <i>Catalysis Today</i> , 2012 , 186, 76-82	5.3	20
104	High pressure CO2 photoreduction using Au/TiO2: unravelling the effect of co-catalysts and of titania polymorphs. <i>Catalysis Science and Technology</i> , 2019 , 9, 2253-2265	5.5	19
103	AuRu/AC as an effective catalyst for hydrogenation reactions. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 28171-6	3.6	19
102	Dual-Site-Mediated Hydrogenation Catalysis on Pd/NiO: Selective Biomass Transformation and Maintenance of Catalytic Activity at Low Pd Loading. <i>ACS Catalysis</i> , 2020 , 10, 5483-5492	13.1	19
101	The confinement effect on the activity of Au NPs in polyol oxidation. <i>Catalysis Science and Technology</i> , 2016 , 6, 598-601	5.5	19
100	Operando Attenuated Total Reflectance FTIR Spectroscopy: Studies on the Different Selectivity Observed in Benzyl Alcohol Oxidation. <i>ChemCatChem</i> , 2015 , 7, 2534-2541	5.2	19
99	Mo and W Carbide: Tunable Catalysts for Liquid Phase Conversion of Alcohols. <i>ACS Catalysis</i> , 2012 , 2, 1377-1380	13.1	18

(2021-2019)

98	Selective oxidation of glycerol on morphology controlled ceria nanomaterials. <i>Catalysis Science and Technology</i> , 2019 , 9, 2328-2334	5.5	17
97	Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting AuPd on oxygen functionalized carbon nanofibers. <i>Catalysis Science and Technology</i> , 2016 , 6, 694-697	5.5	17
96	Defect-Mediated Functionalization of Carbon Nanotubes as a Route to Design Single-Site Basic Heterogeneous Catalysts for Biomass Conversion. <i>Angewandte Chemie</i> , 2009 , 121, 6665-6668	3.6	17
95	Exploring the Effect of Au/Pt Ratio on Glycerol Oxidation in Presence and Absence of a Base. <i>Catalysts</i> , 2018 , 8, 54	4	16
94	Heart and respiratory rates and adrenal response to propofol or alfaxalone in rabbits. <i>Veterinary Record</i> , 2012 , 170, 444	0.9	15
93	Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 133, 110280	16.2	14
92	Gold-silver catalysts: Effect of catalyst structure on the selectivity of glycerol oxidation. <i>Journal of Catalysis</i> , 2018 , 368, 324-335	7-3	14
91	Capping Agent Effect on Pd-Supported Nanoparticles in the Hydrogenation of Furfural. <i>Catalysts</i> , 2020 , 10, 11	4	13
90	Tailoring the 3D Structure of Pd Nanocatalysts Supported on Mesoporous Carbon for Furfural Hydrogenation. <i>ChemNanoMat</i> , 2018 , 4, 1125-1132	3.5	13
89	Ruthenium on Carbonaceous Materials for the Selective Hydrogenation of HMF. <i>Molecules</i> , 2018 , 23,	4.8	13
88	AuPt Alloy on TiO2: A Selective and Durable Catalyst for L-Sorbose Oxidation to 2-Keto-Gulonic Acid. <i>ChemSusChem</i> , 2015 , 8, 4189-94	8.3	13
87	Bio-adipic acid production by catalysed hydrogenation of muconic acid in mild operating conditions. <i>Applied Catalysis B: Environmental</i> , 2017 , 218, 220-229	21.8	12
86	Bio Adipic Acid Production from Sodium Muconate and Muconic Acid: A Comparison of two Systems. <i>ChemCatChem</i> , 2019 , 11, 3075-3084	5.2	11
85	Metal Carbides for Biomass Valorization. Applied Sciences (Switzerland), 2018, 8, 259	2.6	11
84	Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition. <i>Journal of Carbon Research</i> , 2018 , 4, 26	3.3	11
83	Palladium catalysts supported on N-functionalized hollow vapor-grown carbon nanofibers: The effect of the basic support and catalyst reduction temperature. <i>Applied Catalysis A: General</i> , 2011 , 408, 137-147	5.1	11
82	Spectroscopic Investigation of Titania-Supported Gold Nanoparticles Prepared by a Modified Deposition/Precipitation Method for the Oxidation of CO. <i>ChemCatChem</i> , 2016 , 8, 2136-2145	5.2	11
81	Synthesis of palladium-rhodium bimetallic nanoparticles for formic acid dehydrogenation. <i>Journal of Energy Chemistry</i> , 2021 , 52, 301-309	12	11

80	Selective Oxidation of Veratryl Alcohol over Au-Pd/CeZrOlCatalysts Synthesized by Sol-Immobilization: Effect of Au:Pd Molar Ratio. <i>Nanomaterials</i> , 2018 , 8,	5.4	11
79	Controlling the Incorporation of Phosphorus Functionalities on Carbon Nanofibers: Effects on the Catalytic Performance of Fructose Dehydration. <i>Journal of Carbon Research</i> , 2018 , 4, 9	3.3	11
78	Conceptual design and feasibility assessment of photoreactors for solar energy storage. <i>Solar Energy</i> , 2018 , 172, 225-231	6.8	10
77	Amino Alcohol Oxidation with Gold Catalysts: The Effect of Amino Groups. <i>Materials</i> , 2013 , 6, 2777-278	83.5	10
76	Valorisation of Biomass Derived Furfural and Levulinic Acid by Highly Efficient Pd@ND Catalyst. <i>Energy Technology</i> , 2019 , 7, 269-276	3.5	10
75	Influence of carbon support properties in the hydrodeoxygenation of vanillin as lignin model compound. <i>Catalysis Today</i> , 2021 , 367, 220-227	5.3	10
74	Electrocatalytic activity of multiwalled carbon nanotubes decorated by silver nanoparticles for the detection of halothane. <i>Catalysis Today</i> , 2015 , 249, 265-269	5.3	9
73	Copper and cobalt nanoparticles embedded in naturally derived graphite electrodes for the sensing of the neurotransmitter epinephrine. <i>New Journal of Chemistry</i> , 2018 , 42, 6604-6608	3.6	9
72	Promotion Mechanisms of Au Supported on TiO2 in Thermal- and Photocatalytic Glycerol Conversion. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 19734-19741	3.8	9
71	Preformed Au colloidal nanoparticles immobilised on NiO as highly efficient heterogeneous catalysts for reduction of 4-nitrophenol to 4-aminophenol. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 103381	6.8	9
70	Cyclic Voltammetry Characterization of Au, Pd, and AuPd Nanoparticles Supported on Different Carbon Nanofibers. <i>Surfaces</i> , 2019 , 2, 205-215	2.9	8
69	Effect of Carbon Support, Capping Agent Amount, and Pd NPs Size for Bio-Adipic Acid Production from Muconic Acid and Sodium Muconate. <i>Nanomaterials</i> , 2020 , 10,	5.4	8
68	Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural <i>RSC Advances</i> , 2020 , 10, 11507-11516	3.7	8
67	Diols Production From Glycerol Over Pt-Based Catalysts: On the Role Played by the Acid Sites of the Support. <i>Catalysis Letters</i> , 2017 , 147, 2523-2533	2.8	8
66	Catalytic Activity of Ti-based MXenes for the Hydrogenation of Furfural. <i>ChemCatChem</i> , 2020 , 12, 5733	-5,7,42	8
65	Quantifying Morphology and Diffusion Properties of Mesoporous Carbon From High-Fidelity 3D Reconstructions. <i>Microscopy and Microanalysis</i> , 2019 , 25, 891-902	0.5	7
64	Preformed Pd-Based Nanoparticles for the Liquid Phase Decomposition of Formic Acid: Effect of Stabiliser, Support and AuPd Ratio. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 1752	2.6	7
63	Gold as a modifier of metal nanoparticles: effect on structure and catalysis. <i>Faraday Discussions</i> , 2018 , 208, 395-407	3.6	7

62	Fragrances by selective oxidation of long-chain alcohols. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 945-951	11.3	7
61	Unraveling the effect of ZrO2 modifiers on the nature of active sites on AuRu/ZrO2 catalysts for furfural hydrogenation. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 1469-1480	5.8	7
60	Decomposition of Additive-Free Formic Acid Using a Pd/C Catalyst in Flow: Experimental and CFD Modelling Studies. <i>Catalysts</i> , 2021 , 11, 341	4	7
59	N-Modified Carbon-Based Materials: Nanoscience for Catalysis. <i>Chemical Record</i> , 2016 , 16, 2187-2197	6.6	7
58	A Pt-Mo hybrid catalyst for furfural transformation. <i>Catalysis Today</i> , 2020 , 357, 122-131	5.3	7
57	Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application. <i>Catalysts</i> , 2018 , 8, 623	4	7
56	CNF-Functionalization as Versatile Tool for Tuning Activity in Cellulose-Derived Product Hydrogenation. <i>Molecules</i> , 2019 , 24,	4.8	6
55	Metal-Support Cooperative Effects in Au/VPO for the Aerobic Oxidation of Benzyl Alcohol to Benzyl Benzoate. <i>Nanomaterials</i> , 2019 , 9,	5.4	6
54	Gold-iridium catalysts for the hydrogenation of biomass derived products. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 1771-1775	11.3	6
53	Catalytic Performances of Au P t Nanoparticles on Phosphorous Functionalized Carbon Nanofibers towards HMF Oxidation. <i>Journal of Carbon Research</i> , 2018 , 4, 48	3.3	6
52	Base-free glycerol oxidation over N-TiO2 supported Au B t catalysts. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2019 , 128, 979-990	1.6	5
51	Metal free alkene hydrogenation by B-doped graphitic carbon nitride. <i>Catalysis Science and Technology</i> , 2020 , 10, 3024-3028	5.5	5
50	Carbon-Supported Au Nanoparticles: Catalytic Activity Ruled Out by Carbon Support. <i>Topics in Catalysis</i> , 2018 , 61, 1928-1938	2.3	5
49	Role of defects in carbon materials during metal-free formic acid dehydrogenation. <i>Nanoscale</i> , 2020 , 12, 22768-22777	7.7	5
48	Tailored N-Containing Carbons as Catalyst Supports in Alcohol Oxidation. <i>Materials</i> , 2016 , 9,	3.5	5
47	Au-Based Catalysts: Electrochemical Characterization for Structural Insights. <i>Molecules</i> , 2016 , 21, 261	4.8	5
46	Ru supported on micro and mesoporous carbons as catalysts for biomass-derived molecules hydrogenation. <i>Catalysis Today</i> , 2020 , 357, 143-151	5.3	5
45	Metal nanoclusters stabilized by pH-responsive microgels: Preparation and evaluation of their catalytic potential. <i>Reactive and Functional Polymers</i> , 2017 , 115, 81-86	4.6	4

44	Synergistic Effect in Au-Cu Bimetallic Catalysts for the Valorization of Lignin-Derived Compounds. <i>Catalysts</i> , 2020 , 10, 332	4	4
43	Selective catalytic amination of halogenated aldehydes with calcined palladium catalysts <i>RSC Advances</i> , 2018 , 8, 15202-15206	3.7	4
42	Glycerol Oxidation over Supported Gold Catalysts: The Combined Effect of Au Particle Size and Basicity of Support. <i>Processes</i> , 2020 , 8, 1016	2.9	4
41	Combined Macroscopic, Nanoscopic, and Atomic-Scale Characterization of Gold R uthenium Bimetallic Catalysts for Octanol Oxidation. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 419-	43 1	4
40	The Effect of Carbon Nanofibers Surface Properties in Hydrogenation and Dehydrogenation Reactions. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 5061	2.6	4
39	Catalytic Oxidation of Methoxy Substituted Benzyl Alcohols as Model for Lignin Valorisation. <i>Catalysis Today</i> , 2020 , 357, 15-21	5.3	4
38	Enhancing activity, selectivity and stability of palladium catalysts in formic acid decomposition: Effect of support functionalization. <i>Catalysis Today</i> , 2021 , 382, 61-61	5.3	4
37	Versatile carbon supported mono and bimetallic nanocomposites: synthesis, characterization and their potential application for furfural reduction. <i>Materials Today Chemistry</i> , 2020 , 17, 100319	6.2	3
36	Production and Upgrading of EValerolactone with Bifunctional Catalytic Processes. <i>Biofuels and Biorefineries</i> , 2017 , 221-237	0.3	3
35	Effect of the carbon nanotube basicity in Pd/N-CNT catalysts on the synthesis of R-1-phenyl ethyl acetate. <i>Studies in Surface Science and Catalysis</i> , 2010 , 283-287	1.8	3
34	Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. <i>Studies in Surface Science and Catalysis</i> , 2006 , 162, 553-560	1.8	3
33	More Insights into Support and Preparation Method Effects in Gold Catalyzed Glycerol Oxidation. <i>Current Organic Synthesis</i> , 2017 , 14, 377-382	1.9	3
32	Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO: Effect of Reaction Parameters on the Activity. <i>Nanomaterials</i> , 2021 , 11,	5.4	3
31	Oxidation of 5-Hydroxymethylfurfural on Supported Ag, Au, Pd and Bimetallic Pd-Au Catalysts: Effect of the Support. <i>Catalysts</i> , 2021 , 11, 115	4	3
30	On the role of bismuth as modifier in AuPdBi catalysts: Effects on liquid-phase oxidation and hydrogenation reactions. <i>Catalysis Communications</i> , 2021 , 158, 106340	3.2	3
29	Extracting structural information of Au colloids at ultra-dilute concentrations: identification of growth during nanoparticle immobilization. <i>Nanoscale Advances</i> , 2019 , 1, 2546-2552	5.1	2
28	Gold-Silver Catalysts: Ruling Factors for Establishing Synergism. ChemCatChem, 2019, 11, 4043-4053	5.2	2
27	DFT-Assisted Spectroscopic Studies on the Coordination of Small Ligands to Palladium: From Isolated Ions to Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 4781-4790	3.8	2

26	Enhanced Activity of Au/NiO Nanohybrids for the Reductive Amination of Benzyl Alcohol. <i>Materials</i> , 2017 , 10,	3.5	2
25	Heterogeneous Catalyzed Chemoselective Reductive Amination of Halogenated Aromatic Aldehydes. <i>ChemCatChem</i> , 2021 , 13, 3021-3026	5.2	2
24	Discovering the role of substrate in aldehyde hydrogenation. <i>Journal of Catalysis</i> , 2021 , 399, 162-169	7.3	2
23	Ruling Factors in Cinnamaldehyde Hydrogenation: Activity and Selectivity of Pt-Mo Catalysts. <i>Nanomaterials</i> , 2021 , 11,	5.4	2
22	Disclosing the Role of Gold on Palladium Gold Alloyed Supported Catalysts in Formic Acid Decomposition. <i>ChemCatChem</i> , 2021 , 13, 4210	5.2	2
21	Coordination of active current limiters and hybrid circuit breakers for a MVDC link meshing MVAC distribution grids 2017 ,		1
20	Antenna model refinement technique from SAR data: A study on the ENVISAT ASAR instrument 2012 ,		1
19	Controlling the Production of Acid Catalyzed Products of Furfural Hydrogenation by Pd/TiO2. <i>ChemCatChem</i> , 2021 , 13, 5121	5.2	1
18	PdAu Bimetallic Catalysts for the Hydrogenation of Muconic Acid to Bio-Adipic Acid. <i>Catalysts</i> , 2021 , 11, 1313	4	1
17	Biomass Processing via Metal Catalysis 2021 , 81-112		1
17 16	Biomass Processing via Metal Catalysis 2021 , 81-112 Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 8462	2.6	1
	Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid	2.6	
16	Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 8462 The Nature of Active Sites in the Pd/C-Catalyzed Hydrogenation/Hydrodeoxygenation of		1
16 15	Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 8462 The Nature of Active Sites in the Pd/C-Catalyzed Hydrogenation/Hydrodeoxygenation of Benzaldehyde. <i>Catalysts</i> , 2022 , 12, 251 A comparative study on the stability of the furfural molecule on the low index Ni, Pd and Pt	4	1
16 15 14	Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 8462 The Nature of Active Sites in the Pd/C-Catalyzed Hydrogenation/Hydrodeoxygenation of Benzaldehyde. <i>Catalysts</i> , 2022 , 12, 251 A comparative study on the stability of the furfural molecule on the low index Ni, Pd and Pt surfaces <i>Royal Society Open Science</i> , 2022 , 9, 211516 Iron as modifier of Pd and Pt-based catalysts for sustainable and green processes. <i>Inorganica</i>	3.3	1 1
16 15 14	Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 8462 The Nature of Active Sites in the Pd/C-Catalyzed Hydrogenation/Hydrodeoxygenation of Benzaldehyde. <i>Catalysts</i> , 2022 , 12, 251 A comparative study on the stability of the furfural molecule on the low index Ni, Pd and Pt surfaces <i>Royal Society Open Science</i> , 2022 , 9, 211516 Iron as modifier of Pd and Pt-based catalysts for sustainable and green processes. <i>Inorganica Chimica Acta</i> , 2022 , 535, 120856 Computational Investigation of Microreactor Configurations for Hydrogen Production from Formic Acid Decomposition Using a Pd/C Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2022 ,	3.3	1 1 1
16 15 14 13	Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 8462 The Nature of Active Sites in the Pd/C-Catalyzed Hydrogenation/Hydrodeoxygenation of Benzaldehyde. <i>Catalysts</i> , 2022 , 12, 251 A comparative study on the stability of the furfural molecule on the low index Ni, Pd and Pt surfaces <i>Royal Society Open Science</i> , 2022 , 9, 211516 Iron as modifier of Pd and Pt-based catalysts for sustainable and green processes. <i>Inorganica Chimica Acta</i> , 2022 , 535, 120856 Computational Investigation of Microreactor Configurations for Hydrogen Production from Formic Acid Decomposition Using a Pd/C Catalyst. <i>Industrial & Decomposition Chemistry Research</i> , 2022 , 61, 1655-1665 Hydrogenation of carbon dioxide (CO2) to fuels in microreactors: a review of set-ups and	3.3 2.7 3.9	1 1 1 0

8	New insights for the catalytic oxidation of cyclohexane to K-A oil. <i>Journal of Energy Chemistry</i> , 2022 , 70, 45-51	12	О
7	N-Doping Effect on the Activity of TiO2 Supported Catalysts in Glycerol Oxidation. <i>Advances in Science, Technology and Innovation</i> , 2018 , 1369-1370	0.3	
6	Insights into the Synthesis and Surface Functionalization of Mesoporous Carbon for Catalytic Applications. <i>ChemistrySelect</i> , 2017 , 2, 7590-7596	1.8	
5	Enhancing Metal-Support Interaction in Heterogeneous Catalysts using Functional Supports. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2010 , 636, 2045-2045	1.3	
4	TEM Investigation on Bimetallic Gold/Palladium Catalysts: The Correlation between Microstructure and Synergistic Effect. <i>Microscopy and Microanalysis</i> , 2007 , 13, 260-261	0.5	
3	A proof of concept for cooperation from the quinone groups adjacent to N sites during the metal-free oxidation of glycerol by nitrogen-rich graphene oxide. <i>New Journal of Chemistry</i> , 2021 , 45, 19651-19654	3.6	
2	Valorisation of Glycerol to Fine Chemicals and Fuels. <i>Advances in Chemical and Materials Engineering Book Series</i> , 2016 , 352-384	0.2	
1	Noble Metal Promoted TiO2 from Silver-Waste Valorisation: Synergism between Ag and Au. <i>Catalysts</i> , 2022 , 12, 235	4	