Alejandro Perez Larios

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1752100/publications.pdf

Version: 2024-02-01

45 papers

813 citations

567281 15 h-index 27 g-index

46 all docs

46 docs citations

46 times ranked

949 citing authors

#	Article	IF	CITATIONS
1	Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts. Fuel, 2012, 100, 139-143.	6.4	113
2	Chitosan-TiO2: A Versatile Hybrid Composite. Materials, 2020, 13, 811.	2.9	75
3	Enhancing the H2 evolution from water–methanol solution using Mn2+–Mn+3–Mn4+ redox species of Mn-doped TiO2 sol–gel photocatalysts. Catalysis Today, 2016, 266, 9-16.	4.4	65
4	Effects in Band Gap for Photocatalysis in TiO2 Support by Adding Gold and Ruthenium. Processes, 2020, 8, 1032.	2.8	51
5	Use of Titanium Dioxide (TiO2) Nanoparticles as Reinforcement Agent of Polysaccharide-Based Materials. Processes, 2020, 8, 1395.	2.8	48
6	Synthesis and Characterization of TiO2-ZnO-MgO Mixed Oxide and Their Antibacterial Activity. Materials, 2019, 12, 698.	2.9	46
7	Experimental and theoretical study of NiMoW, NiMo, and NiW sulfide catalysts supported on an AlTiMg mixed oxide during the hydrodesulfurization of dibenzothiophene. Fuel, 2013, 113, 733-743.	6.4	44
8	Effect of TiO2-ZnO-MgO Mixed Oxide on Microbial Growth and Toxicity against Artemia salina. Nanomaterials, 2019, 9, 992.	4.1	27
9	Photocatalysis for disinfection and removal of contaminants of emerging concern. Chemical Engineering Journal, 2015, 261, 1-2.	12.7	26
10	Extraction of Alkaloids Using Ultrasound from Pulp and By-Products of Soursop Fruit (Annona) Tj ETQq0 0 0 rgB	T /Qverloc 2.5	k 10 Tf 50 382
11	Mangiferin-Loaded Polymeric Nanoparticles: Optical Characterization, Effect of Anti-topoisomerase I, and Cytotoxicity. Cancers, $2019, 11, 1965$.	3.7	18
12	Anticancer Activity of Selenium Nanoparticles In Vitro Studies. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 1658-1673.	1.7	18
13	Effect of the Precursor on the Synthesis of ZnO and Its Photocatalytic Activity. Inorganics, 2022, 10, 16.	2.7	18
14	Ultrasound-Assisted Extraction of Total Acetogenins from the Soursop Fruit by Response Surface Methodology. Molecules, 2020, 25, 1139.	3.8	17
15	Photocatalytic Degradation of Rhodamine B and Methylene Orange Using TiO2-ZrO2 as Nanocomposite. Catalysts, 2021, 11, 1035.	3.5	17
16	Effects of Minimal Processing Technologies on Jackfruit (Artocarpus heterophyllus Lam.) Quality Parameters. Food and Bioprocess Technology, 2018, 11, 1761-1774.	4.7	16
17	Use of a Taguchi Design in Hibiscus sabdariffa Extracts Encapsulated by Spray-Drying. Foods, 2020, 9, 128.	4.3	15
18	A Review of the Antimicrobial Activity of Selenium Nanoparticles. Journal of Nanoscience and Nanotechnology, 2021, 21, 5383-5398.	0.9	15

#	Article	IF	Citations
19	Synthesis of Camphene by α-Pinene Isomerization Using W2O3–Al2O3 Catalysts. Topics in Catalysis, 2010, 53, 1176-1178.	2.8	12
20	On the role of Fe3+ ions in FexOy/C catalysts for hydrogen production from the photodehydrogenation of ethanol. Journal of Hazardous Materials, 2013, 263, 11-19.	12.4	12
21	Hydrogen Production from Aqueous Methanol Solutions Using Ti–Zr Mixed Oxides as Photocatalysts under UV Irradiation. Catalysts, 2019, 9, 938.	3.5	12
22	Polysaccharide-Based Packaging Functionalized with Inorganic Nanoparticles for Food Preservation. Polysaccharides, 2021, 2, 400-428.	4.8	12
23	TiO2-La2O3 as Photocatalysts in the Degradation of Naproxen. Inorganics, 2022, 10, 67.	2.7	12
24	A Review of the Effects of Gold, Silver, Selenium, and Zinc Nanoparticles on Diabetes Mellitus in Murine Models. Mini-Reviews in Medicinal Chemistry, 2021, 21, 1798-1812.	2.4	11
25	Protein–TiO2: A Functional Hybrid Composite with Diversified Applications. Coatings, 2020, 10, 1194.	2.6	10
26	Effect of Mg as Impurity on the Structure of Mesoporous \hat{I}^3 -Al203: Efficiency as Catalytic Support in HDS of DBT. International Journal of Chemical Reactor Engineering, 2018, 16, .	1.1	7
27	Effect of vacuum-thermosonication on the inactivation of Escherichia coli, Staphylococcus aureus, polyphenol oxidase and the quality parameters of soursop puree. Innovative Food Science and Emerging Technologies, 2020, 59, 102255.	5. 6	7
28	Investigating structural changes of Chitosan-TiO2 and Chitosan-TiO2-ZnO-MgO hybrid films during storage by FTIR spectroscopy. Macedonian Journal of Chemistry and Chemical Engineering, 2021, 40, 197.	0.6	7
29	Photocatalysis: From the treatment of emerging contaminants to energy conversion. Journal of Hazardous Materials, 2013, 263, 1.	12.4	6
30	Review of Therapies using TiO2 Nanomaterials for Increased Anticancer Capability. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 2241-2254.	1.7	6
31	Study of the Interaction of Ti–Zn as a Mixed Oxide at Different pH Values Synthesized by the Sol–Gel Method and Its Antibacterial Properties. Nanomaterials, 2022, 12, 1948.	4.1	6
32	Nanoparticles of two ZnO Precursors as an Encapsulating Matrix of Mangiferin: Associated Studies to Cytotoxic Effects on Liver Cancer Cells Hep-G2 and Healthy Lung Cell Beas-2B. Journal of Cluster Science, 2022, 33, 163-171.	3.3	5
33	Ti-Co mixed oxide as photocatalysts in the generation of hydrogen from water. International Journal of Chemical Reactor Engineering, 2022, 20, 129-140.	1.1	5
34	A Study of Zn-Ca Nanocomposites and Their Antibacterial Properties. International Journal of Molecular Sciences, 2022, 23, 7258.	4.1	5
35	Ni/C nanostructures: Impregnating-method preparation, textural and structural features, and catalytic property for the hydrogen production. Journal of Materials Research, 2013, 28, 3297-3309.	2.6	4
36	Study of the Response Surface in the Photocatalytic Degradation of Acetaminophen Using TiO2. Photochem, 2022, 2, 225-236.	2.2	4

#	Article	IF	Citations
37	Drug delivery system of green synthesized Ti-Cu nanocomposite. Materials Letters, 2022, 321, 132437.	2.6	4
38	Ti–Fe mixed oxides as photocatalysts in the generation of hydrogen under UV-light irradiation. International Journal of Hydrogen Energy, 2022, 47, 30178-30186.	7.1	4
39	Photodegradation and Mineralization of Phenol Using TiO2Coated \hat{I}^3 -Al2O3: Effect of Thermic Treatment. Processes, 2022, 10, 1186.	2.8	4
40	Study of arsenic (V) removal of water by using agglomerated alumina. Nova Scientia, 2019, 11, 01-25.	0.1	3
41	Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement. Polysaccharides, 2022, 3, 411-425.	4.8	2
42	Characterization of Functionalized PLGA Nanoparticles Loaded with Mangiferin and Lupeol, and their Effect on BEAS-2B and HepG2 Cell Lines. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 1174-1183.	1.7	2
43	Antimicrobial activity of green synthesized Se nanoparticles using ginger and onion extract: a laboratory and <i>in silico</i> analysis. Particulate Science and Technology, 2023, 41, 319-329.	2.1	2
44	Zinc Oxide Nanoparticles with Mangiferin: Optical Properties, In Vitro Release Studies, and Antibacterial Activity. Revista Brasileira De Farmacognosia, 2022, 32, 447-454.	1.4	1
45	Biofunctionalization of Endolysins with Oligosacharides: Formulation of Therapeutic Agents to Combat Multi-Resistant Bacteria and Potential Strategies for Their Application. Polysaccharides, 2022, 3, 306-325.	4.8	0