Jieming Zhen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1751766/publications.pdf

Version: 2024-02-01

		1040056	1372567	
11	472	9	10	
papers	citations	h-index	g-index	
11	11	11	957	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	A facile mechanochemical route to a covalently bonded graphitic carbon nitride (g-C ₃ N ₄) and fullerene hybrid toward enhanced visible light photocatalytic hydrogen production. Nanoscale, 2017, 9, 5615-5623.	5.6	89
2	Pyridine-functionalized fullerene additive enabling coordination interactions with CH ₃ NH ₃ PbI ₃ perovskite towards highly efficient bulk heterojunction solar cells. Journal of Materials Chemistry A, 2019, 7, 2754-2763.	10.3	83
3	Successive surface engineering of TiO ₂ compact layers via dual modification of fullerene derivatives affording hysteresis-suppressed high-performance perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1724-1733.	10.3	77
4	Anchoring Fullerene onto Perovskite Film via Grafting Pyridine toward Enhanced Electron Transport in High-Efficiency Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32471-32482.	8.0	73
5	An ethanolamine-functionalized fullerene as an efficient electron transport layer for high-efficiency inverted polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 8072-8079.	10.3	47
6	Imidazole-Functionalized Fullerene as a Vertically Phase-Separated Cathode Interfacial Layer of Inverted Ternary Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2720-2729.	8.0	33
7	Osmium Bipyridine-Containing Redox Polymers Based on Cellulose and Their Reversible Redox Activity. Journal of Physical Chemistry B, 2012, 116, 55-62.	2.6	31
8	Steering the electron transport properties of pyridine-functionalized fullerene derivatives in inverted perovskite solar cells: the nitrogen site matters. Journal of Materials Chemistry A, 2020, 8, 3872-3881.	10.3	25
9	Efficiency enhancement of polymer solar cells by applying an alcohol-soluble fullerene aminoethanol derivative as a cathode buffer layer. Organic Electronics, 2016, 39, 191-198.	2.6	11
10	Functionalization of fullerene by polyethylene glycol toward promoted electron transport in inverted polymer solar cells. Organic Electronics, 2020, 77, 105502.	2.6	3
11	Photoexcitation in Donor–Acceptor Dyads Based on Endohedral Fullerenes and Their Applications in Organic Photovoltaics. Nanostructure Science and Technology, 2017, , 103-122.	0.1	O