
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1751633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time-varying sensitivity analysis of an influenza model with interventions. International Journal of Biomathematics, 2022, 15, .	2.9	7
2	A Mathematical Model of the Transmission Dynamics of Bovine Schistosomiasis with Contaminated Environment. Acta Biotheoretica, 2022, 70, 9.	1.5	3
3	Impact of Infective Immigrants on COVID-19 Dynamics. Mathematical and Computational Applications, 2022, 27, 11.	1.3	1
4	The voluntary medical male circumcision Site Capacity and Productivity Assessment Tool (SCPT): An innovative visual management tool to optimize site service delivery. PLOS Global Public Health, 2022, 2, e0000126.	1.6	0
5	Optimal control analysis of a COVID-19 and tuberculosis co-dynamics model. Informatics in Medicine Unlocked, 2022, 28, 100849.	3.4	20
6	Dynamics of a two-group structured malaria transmission model. Informatics in Medicine Unlocked, 2022, 29, 100897.	3.4	7
7	Modeling COVID-19 daily cases in Senegal using a generalized Waring regression model. Physica A: Statistical Mechanics and Its Applications, 2022, 597, 127245.	2.6	3
8	HIV and COVID-19 co-infection: A mathematical model and optimal control. Informatics in Medicine Unlocked, 2022, 31, 100978.	3.4	21
9	Dynamic of a two-strain COVID-19 model with vaccination. Results in Physics, 2022, 39, 105777.	4.1	12
10	Moving away from the "unit cost". Predicting country-specific average cost curves of VMMC services accounting for variations in service delivery platforms in sub-Saharan Africa. PLoS ONE, 2021, 16, e0249076.	2.5	4
11	Qualitative Analysis of an influenza model with biomedical interventions. Chaos, Solitons and Fractals, 2021, 146, 110852.	5.1	2
12	A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding. Acta Biotheoretica, 2021, 69, 511-541.	1.5	2
13	A Mathematical Model of COVID-19 with Vaccination and Treatment. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-16.	1.3	77
14	Malaria and COVID-19 co-dynamics: A mathematical model and optimal control. Applied Mathematical Modelling, 2021, 99, 294-327.	4.2	58
15	OPTIMAL CONTROL ANALYSIS OF A HUMAN–BOVINE SCHISTOSOMIASIS MODEL. Journal of Biological Systems, 2021, 29, 1-26.	1.4	5
16	COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis. European Physical Journal Plus, 2021, 136, 1090.	2.6	33
17	Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study. Informatics in Medicine Unlocked, 2021, 27, 100807.	3.4	6
18	Optimal control of a malaria model with long-lasting insecticide-treated nets. Mathematical Modelling and Control, 2021, 1, 188-207.	0.9	2

#	Article	IF	CITATIONS
19	A simple two-strain HSV epidemic model with palliative treatment. Open Journal of Mathematical Analysis, 2021, 5, 53-65.	0.2	0
20	A Mathematical Model for the Transmission Dynamics of Lymphatic Filariasis with Intervention Strategies. Acta Biotheoretica, 2020, 68, 297-320.	1.5	2
21	Conditions for a Second Wave of COVID-19 Due to Interactions Between Disease Dynamics and Social Processes. Frontiers in Physics, 2020, 8, .	2.1	43
22	Using mathematical modeling to inform health policy: A case study from voluntary medical male circumcision scale-up in eastern and southern Africa and proposed framework for success. PLoS ONE, 2019, 14, e0213605.	2.5	21
23	Meta-analysis of average costs of HIV testing and counselling and voluntary medical male circumcision across thirteen countries. African Journal of AIDS Research, 2019, 18, 341-349.	0.9	3
24	Optimal control of intervention strategies in malaria–tuberculosis co-infection with relapse. International Journal of Biomathematics, 2018, 11, 1850017.	2.9	9
25	Voluntary medical male circumcision service delivery in South Africa: The economic costs and potential opportunity for private sector involvement. PLoS ONE, 2018, 13, e0208698.	2.5	2
26	Scaling Up Voluntary Medical Male Circumcision for Human Immunodeficiency Virus Prevention for Adolescents and Young Adult Men: A Modeling Analysis of Implementation and Impact in Selected Countries. Clinical Infectious Diseases, 2018, 66, S166-S172.	5.8	18
27	Estimating the cost of diagnosing HIV at birth in Lesotho. PLoS ONE, 2018, 13, e0202420.	2.5	8
28	Analysis of bias in an Ebola epidemic model by extended Kalman filter approach. Mathematics and Computers in Simulation, 2017, 142, 113-129.	4.4	14
29	Mathematical analysis of a lymphatic filariasis model with quarantine and treatment. BMC Public Health, 2017, 17, 265.	2.9	12
30	The Cost of Voluntary Medical Male Circumcision in South Africa. PLoS ONE, 2016, 11, e0160207.	2.5	16
31	Estimating Client Out-of-Pocket Costs for Accessing Voluntary Medical Male Circumcision in South Africa. PLoS ONE, 2016, 11, e0164147.	2.5	10
32	The Impact of HIV Care and Support Interventions on Key Outcomes in Low- and Middle-Income Countries. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 68, S253-S256.	2.1	21
33	A \$\$extit{SIR}\$\$ SIR epidemic model with incubation period. Afrika Matematika, 2015, 26, 77-85.	0.8	Ο
34	Optimal (Control of) Intervention Strategies for Malaria Epidemic in Karonga District, Malawi. Abstract and Applied Analysis, 2014, 2014, 1-20.	0.7	14
35	A mathematical model of avian influenza with half-saturated incidence. Theory in Biosciences, 2014, 133, 23-38.	1.4	40
36	Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo. Afrika Matematika, 2013, 24, 55-68.	0.8	38

3

#	Article	IF	CITATIONS
37	STUDYING THE IDENTIFIABILITY OF EPIDEMIOLOGICAL MODELS USING MCMC. International Journal of Biomathematics, 2013, 06, 1350008.	2.9	5
38	Control Strategies for the Spread of Malaria in Humans With Variable Attractiveness. Mathematical Population Studies, 2013, 20, 82-100.	2.2	9
39	MODELING CHOLERA DISEASE WITH EDUCATION AND CHLORINATION. Journal of Biological Systems, 2013, 21, 1340007.	1.4	23
40	CAN CULLING TO PREVENT MONKEYPOX INFECTION BE COUNTER-PRODUCTIVE? SCENARIOS FROM A THEORETICAL MODEL. Journal of Biological Systems, 2012, 20, 259-283.	1.4	13
41	HIV/AIDS Model with Early Detection and Treatment. ISRN Applied Mathematics, 2012, 2012, 1-14.	0.5	0
42	HIV/AIDS Dynamics with Three Control Strategies: The Role of Incidence Function. ISRN Applied Mathematics, 2012, 2012, 1-25.	0.5	1
43	Global dynamics of a time delayedSIRmodel with varying population size. Dynamical Systems, 2012, 27, 145-160.	0.4	3
44	Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. Journal of Mathematical Biology, 2012, 65, 809-854.	1.9	96
45	Modelling the Role of Diagnosis, Treatment, and Health Education on Multidrug-Resistant Tuberculosis Dynamics. , 2012, 2012, 1-20.		4
46	Dynamics of an Infectious Disease Where Media Coverage Influences Transmission. , 2012, 2012, 1-10.		69
47	HIV/AIDS dynamics among pregnant women in Zanzibar. Bio, 2012, 1, 85-90.	0.6	0
48	Potential Impact of Male Circumcision, Condom Use, and Microbicides on the Dynamics of HIV/AIDS. , 2012, 2012, 1-11.		0
49	Dynamics of fisheries with prey reserve and harvesting. International Journal of Computer Mathematics, 2011, 88, 1776-1802.	1.8	14
50	Mathematical Analysis of an HIV/AIDS Model: Impact of Educational Programs and Abstinence in Sub-Saharan Africa. Mathematical Modelling and Algorithms, 2011, 10, 31-55.	0.5	27
51	Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination. Acta Biotheoretica, 2011, 59, 1-28.	1.5	89
52	A Mathematical Model of Rift Valley Fever with Human Host. Acta Biotheoretica, 2011, 59, 231-250.	1.5	48
53	A Theoretical Assessment of the Effects of Smoking onÂtheÂTransmission Dynamics of Tuberculosis. Bulletin of Mathematical Biology, 2011, 73, 1333-1357.	1.9	32
54	Impact of Imitation Processes on the Effectiveness ofÂRing Vaccination. Bulletin of Mathematical Biology, 2011, 73, 2748-2772.	1.9	9

#	Article	IF	CITATIONS
55	The impact of media coverage on the transmission dynamics of human influenza. BMC Public Health, 2011, 11, S5.	2.9	163
56	Training initiatives within the AFHSC-Clobal Emerging Infections Surveillance and Response System: support for IHR (2005). BMC Public Health, 2011, 11, S5.	2.9	12
57	Modeling gonorrhea and HIV co-interaction. BioSystems, 2011, 103, 27-37.	2.0	39
58	Mathematical analysis of a cholera model with public health interventions. BioSystems, 2011, 105, 190-200.	2.0	85
59	EXPLORING THE EFFECTS OF PARAMETER HETEROGENEITY ON THE INTRINSIC DYNAMICS OF HIV/AIDS IN HETEROSEXUAL SETTINGS. International Journal of Biomathematics, 2011, 04, 75-92.	2.9	1
60	A mathematical model for antimalarial drug resistance. Mathematical Medicine and Biology, 2011, 28, 335-355.	1.2	26
61	HIV/AIDS dynamics: Impact of economic classes with transmission from poor clinical settings. Journal of Theoretical Biology, 2010, 267, 471-485.	1.7	6
62	HIV/AIDS MODEL ASSESSING THE EFFECTS OF GENDER-INEQUALITY AFFECTING WOMEN IN AFRICAN HETEROSEXUAL SETTINGS. International Journal of Biomathematics, 2010, 03, 43-67.	2.9	5
63	MODELING THE EFFECTS OF SCHISTOSOMIASIS ON THE TRANSMISSION DYNAMICS OF HIV/AIDS. Journal of Biological Systems, 2010, 18, 277-297.	1.4	11
64	STABILITY ANALYSIS OF A TRITROPHIC FOOD CHAIN MODEL WITH AN ADAPTIVE PARAMETER FOR THE PREDATOR. Natural Resource Modelling, 2009, 22, 237-256.	2.0	0
65	Local stability of an <i>SIR</i> epidemic model and effect of time delay. Mathematical Methods in the Applied Sciences, 2009, 32, 2160-2175.	2.3	11
66	Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics. Applied Mathematical Modelling, 2009, 33, 2084-2095.	4.2	76
67	Stability analysis of a time delayed SIR epidemic model with nonlinear incidence rate. Computers and Mathematics With Applications, 2009, 58, 348-359.	2.7	27
68	Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences and Engineering, 2009, 6, 333-362.	1.9	113
69	A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 827-864.	0.9	32
70	A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria. Applied Mathematics and Computation, 2008, 195, 641-662.	2.2	85
71	Dynamical Analysis of Infectious Diseases in Spatially Heterogeneous Environments. , 2008, , 239-251.		0
72	Patient-dependent effects in disease control: a mathematical model. ANZIAM Journal, 2007, 48, 583-596.	0.2	1

#	Article	IF	CITATIONS
73	Global behaviour of an SIR epidemic model with time delay. Mathematical Methods in the Applied Sciences, 2007, 30, 733-749.	2.3	45
74	Variational formulation of an age-physiology dependent population dynamics. Journal of Mathematical Analysis and Applications, 2007, 334, 382-392.	1.0	0
75	Analysis of a tritrophic food chain model. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 2120031-2120032.	0.2	0
76	Theoretical Population Dynamics Model of a Genetically Transmitted Disease: Sickle-Cell Anaemia. Bulletin of Mathematical Biology, 2007, 69, 699-730.	1.9	6
77	Survival Probability of Sickle Cell Patients with Respect to HbF Levels. Journal of Applied Sciences, 2006, 6, 2804-2808.	0.3	0
78	REALISTIC PATTERNS OF INHERITANCE OF SICKLE-CELL ANEMIA GENE: A THEORETICAL APPROACH. Journal of Biological Systems, 2005, 13, 13-22.	1.4	5
79	An age-structured model with delay mortality. BioSystems, 2005, 81, 255-260.	2.0	1
80	The Effects of Migration on the Transmission Dynamics of Sickle Cell Anaemia. Mediterranean Journal of Mathematics, 2005, 2, 357-365.	0.8	3
81	EFFECTS OF SELECTIVE ADVANTAGE OF HbS OVER HbA IN THE TRANSMISSION DYNAMICS OF SICKLE CELL ANAEMIA. International Journal of Modeling, Simulation, and Scientific Computing, 2005, 08, 1-5.	1.4	3
ຊາ			1

82 FUNCTIONAL-DIFFERENTIAL EQUATION: A POPULATION MODEL., 2004, , .