
Cameron M Pittelkow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1751311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Productivity limits and potentials of the principles of conservation agriculture. Nature, 2015, 517, 365-368.	27.8	1,005
2	When does no-till yield more? A global meta-analysis. Field Crops Research, 2015, 183, 156-168.	5.1	538
3	An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 2012, 18, 194-209.	9.5	499
4	Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Research, 2012, 135, 10-21.	5.1	361
5	The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. Agriculture, Ecosystems and Environment, 2018, 251, 194-202.	5.3	149
6	Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agriculture, Ecosystems and Environment, 2013, 177, 10-20.	5.3	133
7	Optimizing rice yields while minimizing yieldâ€scaled global warming potential. Global Change Biology, 2014, 20, 1382-1393.	9.5	109
8	Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agriculture, Ecosystems and Environment, 2018, 261, 62-70.	5.3	96
9	Nitrogen fertilization reduces yield declines following no-till adoption. Field Crops Research, 2015, 183, 204-210.	5.1	69
10	Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits. Journal of Cleaner Production, 2018, 195, 289-300.	9.3	69
11	Optimal Fertilizer Nitrogen Rates and Yield-Scaled Global Warming Potential in Drill Seeded Rice. Journal of Environmental Quality, 2013, 42, 1623-1634.	2.0	68
12	Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt?. Field Crops Research, 2016, 192, 1-12.	5.1	67
13	Assessment of drainage nitrogen losses on a yield-scaled basis. Field Crops Research, 2016, 199, 156-166.	5.1	55
14	Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biology and Biochemistry, 2018, 122, 81-90.	8.8	52
15	Agronomic productivity and nitrogen requirements of alternative tillage and crop establishment systems for improved weed control in direct-seeded rice. Field Crops Research, 2012, 130, 128-137.	5.1	43
16	Population and community structure shifts of ammonia oxidizers after four-year successive biochar application to agricultural acidic and alkaline soils. Science of the Total Environment, 2018, 619-620, 1105-1115.	8.0	38
17	Sustainability of rice intensification in Uruguay from 1993 to 2013. Global Food Security, 2016, 9, 10-18.	8.1	37
18	Field-level factors for closing yield gaps in high-yielding rice systems of Uruguay. Field Crops Research, 2021, 264, 108097.	5.1	32

#	Article	IF	CITATIONS
19	Methane and Nitrous Oxide Emissions from Flooded Rice Systems following the End-of-Season Drain. Journal of Environmental Quality, 2015, 44, 1071-1079.	2.0	29
20	Assessing variation in maize grain nitrogen concentration and its implications for estimating nitrogen balance in the US North Central region. Field Crops Research, 2019, 240, 185-193.	5.1	29
21	Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N2O Emissions. Sustainability, 2017, 9, 510.	3.2	28
22	Firstâ€5eason Crop Yield Response to Organic Soil Amendments: A Metaâ€Analysis. Agronomy Journal, 2017, 109, 1210-1217.	1.8	27
23	A Vision for Incorporating Environmental Effects into Nitrogen Management Decision Support Tools for U.S. Maize Production. Frontiers in Plant Science, 2017, 8, 1270.	3.6	25
24	Nitrogen Management and Methane Emissions in Directâ€6eeded Rice Systems. Agronomy Journal, 2014, 106, 968-980.	1.8	23
25	Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability. Journal of Soils and Water Conservation, 2019, 74, 350-359.	1.6	23
26	Factors contributing to farm-level productivity and household income generation in coastal Bangladesh's rice-based farming systems. PLoS ONE, 2021, 16, e0256694.	2.5	23
27	Tile Drainage Nitrate Losses and Corn Yield Response to Fall and Spring Nitrogen Management. Journal of Environmental Quality, 2017, 46, 1057-1064.	2.0	21
28	Quantifying N leaching losses as a function of N balance: A path to sustainable food supply chains. Agriculture, Ecosystems and Environment, 2022, 324, 107714.	5.3	20
29	Enhancedâ€Efficiency Fertilizer Impacts on Yieldâ€Scaled Nitrous Oxide Emissions in Maize. Soil Science Society of America Journal, 2018, 82, 1469-1481.	2.2	19
30	Towards actionable research frameworks for sustainable intensification in high-yielding rice systems. Scientific Reports, 2020, 10, 9975.	3.3	19
31	Quantifying Onâ€Farm Nitrous Oxide Emission Reductions in Food Supply Chains. Earth's Future, 2020, 8, e2020EF001504.	6.3	19
32	Assessment of high-input soybean management in the US Midwest: Balancing crop production with environmental performance. Agriculture, Ecosystems and Environment, 2020, 292, 106811.	5.3	19
33	Linking Nitrogen Losses With Crop Productivity in Maize Agroecosystems. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	18
34	Agronomic, economic, and environmental performance of nitrogen rates and source in Bangladesh's coastal rice agroecosystems. Field Crops Research, 2019, 241, 107567.	5.1	18
35	Nitrogen rate strategies for reducing yield-scaled nitrous oxide emissions in maize. Environmental Research Letters, 2017, 12, 124006.	5.2	16
36	Exploring the Relationships between Greenhouse Gas Emissions, Yields, and Soil Properties in Cropping Systems. Agriculture (Switzerland), 2018, 8, 62.	3.1	15

CAMERON M PITTELKOW

#	Article	IF	CITATIONS
37	Robust spatial frameworks for leveraging research on sustainable crop intensification. Global Food Security, 2017, 14, 18-22.	8.1	14
38	Soil N ₂ O emissions as affected by longâ€ŧerm residue removal and noâ€ŧill practices in continuous corn. GCB Bioenergy, 2018, 10, 972-985.	5.6	14
39	Integrated assessment of crop production and resource use efficiency indicators for the U.S. Corn Belt. Global Food Security, 2020, 24, 100339.	8.1	14
40	Simulating nitrogen management impacts on maize production in the U.S. Midwest. PLoS ONE, 2018, 13, e0201825.	2.5	13
41	Tillage and Fertilizer Management Effects on Phosphorus Runoff from Minimal Slope Fields. Journal of Environmental Quality, 2018, 47, 462-470.	2.0	13
42	Combining Environmental Monitoring and Remote Sensing Technologies to Evaluate Cropping System Nitrogen Dynamics at the Field-Scale. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	13
43	The MANAGE Drain Concentration database: A new tool compiling North American drainage nutrient concentrations. Agricultural Water Management, 2019, 216, 113-117.	5.6	13
44	Evaluation of nitrogen loss reduction strategies using DRAINMOD-DSSAT in east-central Illinois. Agricultural Water Management, 2020, 240, 106322.	5.6	13
45	Soil and crop response to phosphorus and potassium management under conservation tillage. Agronomy Journal, 2020, 112, 2302-2316.	1.8	11
46	In-season split nitrogen application and cover cropping effects on nitrous oxide emissions in rainfed maize. Agriculture, Ecosystems and Environment, 2022, 326, 107813.	5.3	11
47	Splitâ€nitrogen application with cover cropping reduces subsurface nitrate losses while maintaining corn yields. Journal of Environmental Quality, 2021, 50, 1408-1418.	2.0	10
48	Understanding differences between static and dynamic nitrogen fertilizer tools using simulation modeling. Agricultural Systems, 2021, 194, 103275.	6.1	10
49	To meet grand challenges, agricultural scientists must engage in the politics of constructive collective action. Crop Science, 2021, 61, 24-31.	1.8	8
50	Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients. Agricultural Systems, 2019, 168, 48-55.	6.1	7
51	Predicting nitrate leaching loss in temperate rainfed cereal crops: relative importance of management and environmental drivers. Environmental Research Letters, 2022, 17, 064043.	5.2	7
52	Modeling Inorganic Soil Nitrogen Status in Maize Agroecosystems. Soil Science Society of America Journal, 2019, 83, 1564-1574.	2.2	6
53	Balancing Economic and Environmental Performance for Small-Scale Rice Farmers in Peru. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	6
54	Simulated dataset of corn response to nitrogen over thousands of fields and multiple years in Illinois. Data in Brief, 2022, 40, 107753.	1.0	6

CAMERON M PITTELKOW

#	Article	IF	CITATIONS
55	Synergies and tradeoffs among yield, resource use efficiency, and environmental footprint indicators in rice systems. Current Research in Environmental Sustainability, 2021, 3, 100070.	3.5	5
56	Irrigated rice rotations affect yield and soil organic carbon sequestration in temperate South America. Agronomy Journal, 0, , .	1.8	5
57	Relationship of inâ€season soil nitrogen concentration with corn yield and potential nitrogen losses. Soil Science Society of America Journal, 2020, 84, 1296-1306.	2.2	4
58	Potential Nitrogen Losses in Relation to Spatially Distinct Soil Management History and Biochar Addition. Journal of Environmental Quality, 2018, 47, 62-69.	2.0	3
59	Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production. Sustainability, 2021, 13, 5649.	3.2	2
60	Analysis of the MANAGE Drain Concentration Database to Evaluate Agricultural Management Effects on Drainage Water Nutrient Concentrations. Transactions of the ASABE, 2019, 62, 929-939.	1.1	1
61	Advancing onâ€farm research with UAVs: Cover crop effects on crop growth and yield. Agronomy Journal, 2021, 113, 1071-1083.	1.8	1
62	Top management challenges and concerns for agronomic crop production in California: Identifying critical issues for extension through needs assessment. Agronomy Journal, 2021, 113, 5254-5270.	1.8	1