
Bernard Geffroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1751157/publications.pdf Version: 2024-02-01

REDNADD CEEEDOV

#	Article	IF	CITATIONS
1	Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polymer International, 2006, 55, 572-582.	1.6	829
2	Design and Synthesis of New Circularly Polarized Thermally Activated Delayed Fluorescence Emitters. Journal of the American Chemical Society, 2016, 138, 3990-3993.	6.6	269
3	Structural Instabilities Related to Highly Anharmonic Phonons in Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 2659-2665.	2.1	132
4	<i>orthoâ€; metaâ€</i> , and <i>para</i> â€Dihydroindenofluorene Derivatives as Host Materials for Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2015, 54, 1176-1180.	7.2	129
5	Tunable Organophosphorus Dopants for Bright White Organic Lightâ€Emitting Diodes with Simple Structures. Advanced Materials, 2009, 21, 1261-1265.	11.1	98
6	Benzofuran-fused Phosphole: Synthesis, Electronic, and Electroluminescence Properties. Organic Letters, 2013, 15, 330-333.	2.4	94
7	Dependence of the Properties of Dihydroindenofluorene Derivatives on Positional Isomerism: Influence of the Ring Bridging. Angewandte Chemie - International Edition, 2013, 52, 14147-14151.	7.2	90
8	Spirobifluorene Regioisomerism: A Structure–Property Relationship Study. Chemistry - A European Journal, 2017, 23, 7719-7727.	1.7	85
9	Solution, Solid State, and Film Properties of a Structurally Characterized Highly Luminescent Molecular Europium Plastic Material Excitable with Visible Light. Inorganic Chemistry, 2011, 50, 4851-4856.	1.9	77
10	9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs. Journal of Materials Chemistry C, 2014, 2, 4156-4166.	2.7	75
11	Spiro-configured phenyl acridine thioxanthene dioxide as a host for efficient PhOLEDs. Chemical Communications, 2015, 51, 1313-1315.	2.2	69
12	White Organic Lightâ€Emitting Diodes Based on Quenchâ€Resistant Fluorescent Organophosphorus Dopants. Advanced Functional Materials, 2012, 22, 567-576.	7.8	66
13	White organic light-emitting diodes with fine chromaticity tuning via ultrathin layer position shifting. Applied Physics Letters, 2006, 89, 183513.	1.5	65
14	Direct Experimental Evidence of Halide Ionic Migration under Bias in CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} -Based Perovskite Solar Cells Using GD-OES Analysis. ACS Energy Letters, 2017, 2, 943-949.	8.8	60
15	4-Pyridyl-9,9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs. Journal of Physical Chemistry C, 2015, 119, 5790-5805.	1.5	59
16	All-Solution-Processed Organic Light-Emitting Diodes Based on Photostable Photo-cross-linkable Fluorescent Small Molecules. ACS Applied Materials & Interfaces, 2016, 8, 16207-16217.	4.0	58
17	Phosphole-based π-conjugated electroluminescent materials for OLEDs. New Journal of Chemistry, 2010, 34, 1603.	1.4	57
18	Spirobifluorene-2,7-dicarbazole-4′-phosphine Oxide as Host for High-Performance Single-Layer Green Phosphorescent OLED Devices. Organic Letters, 2015, 17, 4682-4685.	2.4	56

BERNARD GEFFROY

#	Article	IF	CITATIONS
19	Properties modulation of organic semi-conductors based on a donor-spiro-acceptor (D-spiro-A) molecular design: new host materials for efficient sky-blue PhOLEDs. Journal of Materials Chemistry C, 2015, 3, 9701-9714.	2.7	55
20	Synthesis, Electronic Properties and WOLED Devices of Planar Phosphorusâ€Containing Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2015, 21, 6547-6556.	1.7	54
21	Donor/Acceptor Dihydroindeno[1,2â€ <i>a</i>]fluorene and Dihydroindeno[2,1â€ <i>b</i>]fluorene: Towards New Families of Organic Semiconductors. Chemistry - A European Journal, 2015, 21, 9426-9439.	1.7	53
22	Selective Electroless Copper Deposition on Self-Assembled Dithiol Monolayers. ACS Applied Materials & Interfaces, 2009, 1, 584-589.	4.0	52
23	2,2′â€Biphospholes: Building Blocks for Tuning the HOMO–LUMO Gap of Ï€â€5ystems Using Covalent Bonding and Metal Coordination. Angewandte Chemie - International Edition, 2012, 51, 214-217.	7.2	51
24	Enhancing the Performances of P3HT:PCBM–MoS ₃ -Based H ₂ -Evolving Photocathodes with Interfacial Layers. ACS Applied Materials & Interfaces, 2015, 7, 16395-16403.	4.0	51
25	Electron-Rich 4-Substituted Spirobifluorenes: Toward a New Family of High Triplet Energy Host Materials for High-Efficiency Green and Sky Blue Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 6194-6206.	4.0	51
26	Modulation of the Physicochemical Properties of Donor–Spiro–Acceptor Derivatives through Donor Unit Planarisation: Phenylacridine versus Indoloacridine—New Hosts for Green and Blue Phosphorescent Organic Lightâ€Emitting Diodes (PhOLEDs). Chemistry - A European Journal, 2016, 22, 10136-10149.	1.7	49
27	9 <i>H</i> â€Quinolino[3,2,1â€ <i>k</i>]phenothiazine: A New Electronâ€Rich Fragment for Organic Electronics. Chemistry - A European Journal, 2016, 22, 17930-17935.	1.7	46
28	White electroluminescence of lanthanide complexes resulting from exciplex formation. Journal of Materials Chemistry, 2010, 20, 2114.	6.7	45
29	6-(Arylvinylene)-3-bromopyridine Derivatives as Lego Building Blocks for Liquid Crystal, Nonlinear Optical, and Blue Light Emitting Chromophores. Chemistry of Materials, 2005, 17, 502-513.	3.2	44
30	2-Substituted vs 4-substituted-9,9′-spirobifluorene host materials for green and blue phosphorescent OLEDs: a structure–property relationship study. Tetrahedron, 2014, 70, 6337-6351.	1.0	43
31	Exploiting the potential of 2-((5-(4-(diphenylamino)phenyl)thiophen-2-yl)methylene)malononitrile as an efficient donor molecule in vacuum-processed bulk-heterojunction organic solar cells. RSC Advances, 2014, 4, 5236.	1.7	42
32	Effect of Halide Ion Migration on the Electrical Properties of Methylammonium Lead Tri-Iodide Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 17728-17734.	1.5	41
33	Spirophenylacridineâ€2,7â€(diphenylphosphineoxide)â€fluorene: A Bipolar Host for Highâ€Efficiency Singleâ€Layer Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901225.	3.6	41
34	Universal host materials for red, green and blue high-efficiency single-layer phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 16354-16367.	2.7	39
35	Thioxanthene and dioxothioxanthene dihydroindeno[2,1-b]fluorenes: synthesis, properties and applications in green and sky blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 1692-1703.	2.7	38
36	Reversible Photoinduced Phase Segregation and Origin of Long Carrier Lifetime in Mixedâ€Halide Perovskite Films. Advanced Functional Materials, 2020, 30, 2002622.	7.8	37

BERNARD GEFFROY

#	Article	IF	CITATIONS
37	Photovoltaic properties of Schottky and p–n type solar cells based on polythiophene. Journal of Applied Physics, 2001, 90, 1047-1054.	1.1	36
38	Flexible organic–inorganic hybrid layer encapsulation for organic opto-electronic devices. Progress in Organic Coatings, 2015, 80, 27-32.	1.9	36
39	Persistent photoexcitation effect on the poly(3-hexylthiophene) film: Impedance measurement and modeling. Synthetic Metals, 2012, 162, 460-465.	2.1	30
40	Phosphahelicenes: From Chiroptical and Photophysical Properties to OLED Applications. Chemistry - A European Journal, 2019, 25, 5303-5310.	1.7	30
41	Microcavity organic light-emitting diodes on silicon. Applied Physics Letters, 2002, 81, 1717-1719.	1.5	28
42	Rodlike Fluorescent π-Conjugated 3,3′-Bipyridazine Ligand: Optical, Electronic, and Complexation Properties. Inorganic Chemistry, 2010, 49, 3991-4001.	1.9	28
43	Synthesis, Electronic Properties and OLED Devices of Chromophores Based on λ ⁵ â€Phosphinines. Chemistry - A European Journal, 2020, 26, 10534-10543.	1.7	26
44	A highly efficient solution and solid state ESIPT fluorophore and its OLED application. New Journal of Chemistry, 2021, 45, 3014-3021.	1.4	26
45	Tuning the aggregation behaviour of BN-coronene diimides with imide substituents and their performance in devices (OLEDs and OFETs). Journal of Materials Chemistry C, 2021, 9, 14720-14729.	2.7	25
46	Zinc oxide as a hole blocking layer for perovskite solar cells deposited in atmospheric conditions. RSC Advances, 2016, 6, 67715-67723.	1.7	23
47	1,2â€Ðihydrophosphete: A Platform for the Molecular Engineering of Electroluminescent Phosphorus Materials for Lightâ€Emitting Devices. Chemistry - A European Journal, 2014, 20, 9784-9793.	1.7	20
48	Interface effects on the moisture barrier properties of SiNx/PMMA/SiNx hybrid structure. Surface and Coatings Technology, 2014, 254, 429-432.	2.2	18
49	Visible-emitting hybrid sol–gel materials comprising lanthanide ions: thin film behaviour and potential use as phosphors for solid-state lighting. New Journal of Chemistry, 2014, 38, 5793-5800.	1.4	17
50	Using Low Temperature Photoluminescence Spectroscopy to Investigate CH3NH3PbI3 Hybrid Perovskite Degradation. Molecules, 2016, 21, 885.	1.7	17
51	Naphthylâ€Fused Phosphepines: Luminescent Contorted Polycyclic Pâ€Heterocycles. Chemistry - A European Journal, 2020, 26, 1856-1863.	1.7	17
52	Electrical and optical degradation study of methylammonium-based perovskite materials under ambient conditions. Solar Energy Materials and Solar Cells, 2018, 178, 179-185.	3.0	16
53	A SPICE-like DC Model for Organic Thin-Film Transistors. Journal of the Korean Physical Society, 2009, 54, 523-526.	0.3	16
54	Synthesis, characterization, morphological behaviour, and photo- and electroluminescence of highly blue-emitting fluorene-carbazole copolymers with alkyl side-chains of different lengths. Journal of Materials Chemistry C, 2013, 1, 3207.	2.7	15

BERNARD GEFFROY

#	Article	IF	CITATIONS
55	A one-pot route to prepare class II hybrid ionogel electrolytes. New Journal of Chemistry, 2014, 38, 2008-2015.	1.4	13
56	A bridged low band gap A–D–A quaterthiophene as efficient donor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 390-398.	2.7	13
57	Phosphorus-Based Chromophores: Emitters for OLEDs. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 845-853.	0.8	12
58	Photo-induced microstructured polymers for the optimisation and control of organic devices emission properties. Synthetic Metals, 2002, 127, 75-79.	2.1	11
59	Influence of extrinsic and intrinsic parameters onto the formation of surface relief gratings in polar azo molecular glasses. Dyes and Pigments, 2012, 92, 790-797.	2.0	9
60	Improving the performance of polymer light-emitting devices with chemical tools. Polymer International, 2014, 63, 1368-1377.	1.6	9
61	Quinolinophenothiazine as an electron rich fragment for high efficiency RGB single-layer phosphorescent organic light-emitting diodes. Materials Chemistry Frontiers, 2021, 5, 8066-8077.	3.2	9
62	Halide Ion Migration and its Role at the Interfaces in Perovskite Solar Cells. European Journal of Inorganic Chemistry, 2021, 2021, 4781-4789.	1.0	8
63	Scanning electrochemical microscopy as an etching tool for ITO patterning. Journal of Materials Chemistry, 2011, 21, 15962.	6.7	6
64	Small molecule-based photocrosslinkable fluorescent materials toward multilayered and high-resolution emissive patterning. Journal of Materials Chemistry C, 2015, 3, 8403-8412.	2.7	6
65	Blue Electrofluorescence Properties of Furan–Silole Ladder Pi-Conjugated Systems. Applied Sciences (Switzerland), 2018, 8, 812.	1.3	6
66	Soft X-ray characterization of halide perovskite film by scanning transmission X-ray microscopy. Scientific Reports, 2022, 12, 4520.	1.6	6
67	Self-supported PEDT/PVC conducting membranes for 4ï€î² sources preparation. Applied Radiation and Isotopes, 1998, 49, 1259-1264.	0.7	5
68	Charge transport and contact resistance in coplanar devices based on colloidal polyaniline dispersion. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1710-1716.	2.4	4
69	Electron irradiation induced aging effects on radiative recombination properties of quadruple cation organic-inorganic perovskite layers. Emergent Materials, 2020, 3, 133-160.	3.2	4
70	Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode. Applied Physics Letters, 2016, 108, 243101.	1.5	2
71	Low Temperature Solution-Processable 3D-Patterned Charge Recombination Layer for Organic Tandem Solar Cells. Materials, 2019, 12, 162.	1.3	2
72	Si-containing polycyclic aromatic hydrocarbons: synthesis and opto-electronic properties. Chemical Communications, 2021, 58, 88-91.	2.2	2

#	Article	IF	CITATIONS
73	Triphenylamine/oxadiazole hybrids differing by the substitution pattern: Influence on the electroluminescence properties of yellow and green emitting diodes. Synthetic Metals, 2018, 240, 21-29.	2.1	1