Na Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1751041/publications.pdf

Version: 2024-02-01

78	4,203	147566	123241
papers	citations	h-index	g-index
85	85	85	4903
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	WTAP-mediated m6A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death and Differentiation, 2022, 29, 1137-1151.	5. O	66
2	USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nature Communications, 2022, 13, 501.	5.8	32
3	Expression Profiles and Prognostic Value of Multiple Inhibitory Checkpoints in Head and Neck Lymphoepithelioma-Like Carcinoma. Frontiers in Immunology, 2022, 13, 818411.	2.2	1
4	The immune modulation effects of gemcitabine plus cisplatin induction chemotherapy in nasopharyngeal carcinoma. Cancer Medicine, 2022, , .	1.3	3
5	Protein C receptor maintains cancer stem cell properties via activating lipid synthesis in nasopharyngeal carcinoma. Signal Transduction and Targeted Therapy, 2022, 7, 46.	7.1	9
6	A lncRNA signature associated with tumor immune heterogeneity predicts distant metastasis in locoregionally advanced nasopharyngeal carcinoma. Nature Communications, 2022, 13, .	5.8	31
7	Final Overall Survival Analysis of Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma: A Multicenter, Randomized Phase III Trial. Journal of Clinical Oncology, 2022, 40, 2420-2425.	0.8	44
8	Association of Intratumoral Microbiota With Prognosis in Patients With Nasopharyngeal Carcinoma From 2 Hospitals in China. JAMA Oncology, 2022, 8, 1301.	3.4	44
9	Multi-Omics Integration Reveals the Crucial Role of <i>Fusobacterium</i> in the Inflammatory Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. Microbiology Spectrum, 2022, 10, .	1.2	9
10	A Gene-Expression Predictor for Efficacy of Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma. Journal of the National Cancer Institute, 2021, 113, 471-480.	3.0	17
11	Unraveling tumour microenvironment heterogeneity in nasopharyngeal carcinoma identifies biologically distinct immune subtypes predicting prognosis and immunotherapy responses. Molecular Cancer, 2021, 20, 14.	7.9	48
12	Prognostic Value of Pretreatment Serum Cystatin C Level in Nasopharyngeal Carcinoma Patients in the Intensity-modulated Radiotherapy Era. OncoTargets and Therapy, 2021, Volume 14, 29-37.	1.0	1
13	Chemotherapeutic and targeted agents can modulate the tumor microenvironment and increase the efficacy of immune checkpoint blockades. Molecular Cancer, 2021, 20, 27.	7.9	54
14	Gemcitabine synergizes with cisplatin to inhibit nasopharyngeal carcinoma cell proliferation and tumor growth. FASEB Journal, 2021, 35, e21885.	0.2	4
15	A gene expression-based immune content predictor for survival and postoperative radiotherapy response in head and neck cancer. Molecular Therapy - Oncolytics, 2021, 22, 380-387.	2.0	O
16	WIPI-1 inhibits metastasis and tumour growth via the WIPI-1-TRIM21 axis and MYC regulation in nasopharyngeal carcinoma. Oral Oncology, 2021, 122, 105576.	0.8	2
17	Spatial heterogeneity of immune infiltration predicts the prognosis of nasopharyngeal carcinoma patients. Oncolmmunology, 2021, 10, 1976439.	2.1	8
18	Prognostic Implication of Metabolic Syndrome in Patients with Nasopharyngeal Carcinoma: A Large Institution-Based Cohort Study from an Endemic Area. Cancer Management and Research, 2021, Volume 13, 9355-9366.	0.9	1

#	Article	IF	CITATIONS
19	<i>ZNF582</i> hypermethylation promotes metastasis of nasopharyngeal carcinoma by regulating the transcription of adhesion molecules <i>Nectinâ€3</i> and <i>NRXN3</i> . Cancer Communications, 2020, 40, 721-737.	3.7	18
20	Long Noncoding RNA TINCR-Mediated Regulation of Acetyl-CoA Metabolism Promotes Nasopharyngeal Carcinoma Progression and Chemoresistance. Cancer Research, 2020, 80, 5174-5188.	0.4	63
21	Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Research, 2020, 30, 1024-1042.	5.7	182
22	AR-induced long non-coding RNA LINC01503 facilitates proliferation and metastasis via the SFPQ-FOSL1 axis in nasopharyngeal carcinoma. Oncogene, 2020, 39, 5616-5632.	2.6	24
23	Prognostic value of immune score in nasopharyngeal carcinoma using digital pathology. , 2020, 8, e000334.		21
24	Plasma protein-based signature predicts distant metastasis and induction chemotherapy benefit in Nasopharyngeal Carcinoma. Theranostics, 2020, 10, 9767-9778.	4.6	14
25	Serum Calcium Levels Before Antitumour Therapy Predict Clinical Outcomes in Patients with Nasopharyngeal Carcinoma. OncoTargets and Therapy, 2020, Volume 13, 13111-13119.	1.0	6
26	Hypermethylation of UCHL1 Promotes Metastasis of Nasopharyngeal Carcinoma by Suppressing Degradation of Cortactin (CTTN). Cells, 2020, 9, 559.	1.8	23
27	Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. Molecular Cancer, 2020, 19, 33.	7.9	128
28	TRIM21–SERPINB5 aids GMPS repression to protect nasopharyngeal carcinoma cells from radiation-induced apoptosis. Journal of Biomedical Science, 2020, 27, 30.	2.6	30
29	<i>FNDC3B</i> 3′â€UTR shortening escapes from microRNAâ€mediated gene repression and promotes nasopharyngeal carcinoma progression. Cancer Science, 2020, 111, 1991-2003.	1.7	22
30	Higher vs. Lower DP for Ventilated Patients with Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Emergency Medicine International, 2019, 2019, 1-12.	0.3	5
31	Long Noncoding RNA FAM225A Promotes Nasopharyngeal Carcinoma Tumorigenesis and Metastasis by Acting as ceRNA to Sponge miR-590-3p/miR-1275 and Upregulate ITGB3. Cancer Research, 2019, 79, 4612-4626.	0.4	250
32	Astragalin reduces lipopolysaccharide-induced acute lung injury in rats via induction of heme oxygenase-1. Archives of Pharmacal Research, 2019, 42, 704-711.	2.7	15
33	Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. New England Journal of Medicine, 2019, 381, 1124-1135.	13.9	573
34	NFAT1 Hypermethylation Promotes Epithelial-Mesenchymal Transition and Metastasis in Nasopharyngeal Carcinoma by Activating ITGA6 Transcription. Neoplasia, 2019, 21, 311-321.	2.3	18
35	Development and validation of an immune checkpoint-based signature to predict prognosis in nasopharyngeal carcinoma using computational pathology analysis., 2019, 7, 298.		40
36	Hypermethylation of <i>SHISA3</i> Promotes Nasopharyngeal Carcinoma Metastasis by Reducing SGSM1 Stability. Cancer Research, 2019, 79, 747-759.	0.4	35

#	Article	IF	Citations
37	ARNTL hypermethylation promotes tumorigenesis and inhibits cisplatin sensitivity by activating CDK5 transcription in nasopharyngeal carcinoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 11.	3.5	41
38	EZH2-DNMT1-mediated epigenetic silencing of miR-142-3p promotes metastasis through targeting ZEB2 in nasopharyngeal carcinoma. Cell Death and Differentiation, 2019, 26, 1089-1106.	5.0	52
39	Prognostic significance of tumorâ€infiltrating lymphocytes in nondisseminated nasopharyngeal carcinoma: A largeâ€scale cohort study. International Journal of Cancer, 2018, 142, 2558-2566.	2.3	73
40	Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study. Lancet Oncology, The, 2018, 19, 382-393.	5.1	232
41	MicroRNA-101 inhibits invasion and angiogenesis through targeting ITGA3 and its systemic delivery inhibits lung metastasis in nasopharyngeal carcinoma. Cell Death and Disease, 2018, 8, e2566-e2566.	2.7	48
42	Long non-coding RNA DANCR stabilizes HIF- $1\hat{1}\pm$ and promotes metastasis by interacting with NF90/NF45 complex in nasopharyngeal carcinoma. Theranostics, 2018, 8, 5676-5689.	4.6	102
43	m6A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression. Cell Death and Disease, 2018, 9, 1169.	2.7	83
44	Famitinib in combination with concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 1, openâ€label, doseâ€escalation Study. Cancer Communications, 2018, 38, 1-13.	3.7	20
45	Differential genome-wide profiling of alternative polyadenylation sites in nasopharyngeal carcinoma by high-throughput sequencing. Journal of Biomedical Science, 2018, 25, 74.	2.6	7
46	TIPE3 hypermethylation correlates with worse prognosis and promotes tumor progression in nasopharyngeal carcinoma. Journal of Experimental and Clinical Cancer Research, 2018, 37, 227.	3.5	17
47	Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNA-based prognostic model for distant metastasis. Journal of Biomedical Science, 2018, 25, 16.	2.6	38
48	<i>RAB37</i> Hypermethylation Regulates Metastasis and Resistance to Docetaxel-Based Induction Chemotherapy in Nasopharyngeal Carcinoma. Clinical Cancer Research, 2018, 24, 6495-6508.	3.2	25
49	HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma. Nature Communications, 2017, 8, 14053.	5.8	95
50	The immune molecular landscape of the B7 and TNFR immunoregulatory ligand–receptor families in head and neck cancer: A comprehensive overview and the immunotherapeutic implications. Oncolmmunology, 2017, 6, e1288329.	2.1	16
51	Genomic Analysis of Tumor Microenvironment Immune Types across 14 Solid Cancer Types: Immunotherapeutic Implications. Theranostics, 2017, 7, 3585-3594.	4.6	214
52	Epigenetic mediated zinc finger protein 671 downregulation promotes cell proliferation and tumorigenicity in nasopharyngeal carcinoma by inhibiting cell cycle arrest. Journal of Experimental and Clinical Cancer Research, 2017, 36, 147.	3.5	23
53	Microarray Expression Profiling of Long Non-Coding RNAs Involved in Nasopharyngeal Carcinoma Metastasis. International Journal of Molecular Sciences, 2016, 17, 1956.	1.8	31
54	Overexpression of Mitochondria Mediator Gene TRIAP1 by miR-320b Loss Is Associated with Progression in Nasopharyngeal Carcinoma. PLoS Genetics, 2016, 12, e1006183.	1.5	48

#	Article	ΙF	Citations
55	Role of SFRP1 in NPC Metastasisâ€"Response. Cancer Prevention Research, 2016, 9, 416-416.	0.7	1
56	YPEL3 suppresses epithelial–mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway. Journal of Experimental and Clinical Cancer Research, 2016, 35, 109.	3 . 5	41
57	miR-16 targets fibroblast growth factor 2 to inhibit NPC cell proliferation and invasion via PI3K/AKT and MAPK signaling pathways. Oncotarget, 2016, 7, 3047-3058.	0.8	52
58	CXCL12 genetic variants as prognostic markers in nasopharyngeal carcinoma. OncoTargets and Therapy, 2015, 8, 2835.	1.0	12
59	Efficacy of the Additional Neoadjuvant Chemotherapy to Concurrent Chemoradiotherapy for Patients with Locoregionally Advanced Nasopharyngeal Carcinoma: a Bayesian Network Meta-analysis of Randomized Controlled Trials. Journal of Cancer, 2015, 6, 883-892.	1.2	68
60	High expression of Talin-1 is associated with poor prognosis in patients with nasopharyngeal carcinoma. BMC Cancer, 2015, 15, 332.	1.1	21
61	Identification of miR-143 as a tumour suppressor in nasopharyngeal carcinoma based on microRNA expression profiling. International Journal of Biochemistry and Cell Biology, 2015, 61, 120-128.	1.2	30
62	MicroRNA-93 promotes cell growth and invasion in nasopharyngeal carcinoma by targeting disabled homolog-2. Cancer Letters, 2015, 363, 146-155.	3.2	54
63	Genome-Wide Identification of a Methylation Gene Panel as a Prognostic Biomarker in Nasopharyngeal Carcinoma. Molecular Cancer Therapeutics, 2015, 14, 2864-2873.	1.9	80
64	Low SFRP1 Expression Correlates with Poor Prognosis and Promotes Cell Invasion by Activating the Wnt/ \hat{l}^2 -Catenin Signaling Pathway in NPC. Cancer Prevention Research, 2015, 8, 968-977.	0.7	33
65	MiR-145 Inhibits Metastasis by Targeting Fascin Actin-Bundling Protein 1 in Nasopharyngeal Carcinoma. PLoS ONE, 2015, 10, e0122228.	1.1	24
66	Prognostic value of MET protein overexpression and gene amplification in locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2015, 6, 13309-13319.	0.8	19
67	Effect of latent membrane protein 1 expression on overall survival in Epstein-Barr virus-associated cancers: a literature-based meta-analysis. Oncotarget, 2015, 6, 29311-29323.	0.8	37
68	A fourâ€miRNA signature identified from genomeâ€wide serum miRNA profiling predicts survival in patients with nasopharyngeal carcinoma. International Journal of Cancer, 2014, 134, 1359-1368.	2.3	95
69	Overexpression of CIP2A is an independent prognostic indicator in nasopharyngeal carcinoma and its depletion suppresses cell proliferation and tumor growth. Molecular Cancer, 2014, 13, 111.	7.9	21
70	Hotspot mutations in common oncogenes are infrequent in nasopharyngeal carcinoma. Oncology Reports, 2014, 32, 1661-1669.	1.2	17
71	5-Azacytidine Enhances the Radiosensitivity of CNE2 and SUNE1 Cells In Vitro and In Vivo Possibly by Altering DNA Methylation. PLoS ONE, 2014, 9, e93273.	1.1	30
72	Outcomes in patients with non-ST-elevation acute coronary syndrome randomly assigned to invasive versus conservative treatment strategies: A meta-analysis. Clinics, 2014, 69, 398-404.	0.6	8

#	Article	IF	CITATION
73	MiR-451 inhibits cell growth and invasion by targeting MIF and is associated with survival in nasopharyngeal carcinoma. Molecular Cancer, 2013, 12, 123.	7.9	104
74	MiR-29c suppresses invasion and metastasis by targeting TIAM1 in nasopharyngeal carcinoma. Cancer Letters, 2013, 329, 181-188.	3.2	118
75	Reduced expression of Dicer11 is associated with poor prognosis in patients with nasopharyngeal carcinoma. Medical Oncology, 2013, 30, 360.	1.2	10
76	Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncology, The, 2012, 13, 633-641.	5.1	274
77	Low BRMS1 expression promotes nasopharyngeal carcinoma metastasis in vitro and in vivo and is associated with poor patient survival. BMC Cancer, 2012, 12, 376.	1.1	20
78	Nuclear overexpression of metastasis-associated protein 1 correlates significantly with poor survival in nasopharyngeal carcinoma. Journal of Translational Medicine, 2012, 10, 78.	1.8	22