Yongsoo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1751011/publications.pdf

Version: 2024-02-01

567281 501196 1,123 39 15 28 citations h-index g-index papers 43 43 43 1857 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deciphering chemical order/disorder and material properties at the single-atom level. Nature, 2017, 542, 75-79.	27.8	243
2	Observing crystal nucleation in four dimensions using atomic electron tomography. Nature, 2019, 570, 500-503.	27.8	219
3	Three-dimensional coordinates of individual atoms in materials revealed by electronÂtomography. Nature Materials, 2015, 14, 1099-1103.	27.5	172
4	Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nature Materials, 2020, 19, 867-873.	27.5	96
5	GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Scientific Reports, 2017, 7, 10409.	3.3	71
6	Nanomaterial datasets to advance tomography in scanning transmission electron microscopy. Scientific Data, 2016, 3, 160041.	5.3	42
7	Stabilization of orthorhombic phase in single-crystal ZnSnN2 films. AIP Advances, 2016, 6, .	1.3	38
8	Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration. ACS Nano, 2021, 15, 3971-3995.	14.6	36
9	Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature, 2022, 603, 631-636.	27.8	31
10	Atomic electron tomography in three and four dimensions. MRS Bulletin, 2020, 45, 290-297.	3.5	28
11	Untilting BiFeO3: The influence of substrate boundary conditions in ultra-thin BiFeO3 on SrTiO3. APL Materials, 2013, 1, .	5.1	18
12	Origin of stress and enhanced carrier transport in solution-cast organic semiconductor films. Journal of Applied Physics, 2013, 114, 093501.	2.5	17
13	Direct Observation of Three-Dimensional Atomic Structure of Twinned Metallic Nanoparticles and Their Catalytic Properties. Nano Letters, 2022, 22, 665-672.	9.1	17
14	Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography. Nature Communications, 2021, 12, 1962.	12.8	16
15	Understanding Strainâ€Induced Phase Transformations in BiFeO 3 Thin Films. Advanced Science, 2015, 2, 1500041.	11.2	15
16	The presence of a (1 \tilde{A} – 1) oxygen overlayer on ZnO(0001) surfaces and at Schottky interfaces. Journal of Physics Condensed Matter, 2012, 24, 095007.	1.8	11
17	Single-shot 3D coherent diffractive imaging of core-shell nanoparticles with elemental specificity. Scientific Reports, 2018, 8, 8284.	3.3	10
18	A measure of active interfaces in supported catalysts for high-temperature reactions. CheM, 2022, 8, 815-835.	11.7	9

#	Article	IF	CITATIONS
19	Origin of thickness dependence of structural phase transition temperatures in highly strained BiFeO3 thin films. APL Materials, 2016, 4, 036106.	5.1	7
20	Variance-aware weight quantization of multi-level resistive switching devices based on Pt/LaAlO3/SrTiO3 heterostructures. Scientific Reports, 2022, 12, .	3.3	6
21	Growth and modelling of spherical crystalline morphologies of molecular materials. Nature Communications, 2014, 5, 5204.	12.8	5
22	Spatial Mapping of Morphology and Electronic Properties of Airâ€Printed Pentacene Thin Films. Advanced Functional Materials, 2014, 24, 3907-3916.	14.9	4
23	Uncovering the Conformational Distribution of a Small Protein with Nanoparticle-Aided Cryo-Electron Microscopy Sampling. Journal of Physical Chemistry Letters, 2021, 12, 6565-6573.	4.6	4
24	Structural investigation of ZnO O-polar () surfaces and Schottky interfaces. Surface Science, 2013, 610, 22-26.	1.9	3
25	Thin Films: Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films (Adv. Sci. 8/2015). Advanced Science, 2015, 2, .	11.2	1
26	Determining the 3D Atomic Coordinates and Crystal Defects in 2D Materials with Picometer Precision. Microscopy and Microanalysis, 2019, 25, 404-405.	0.4	1
27	Atomic Electron Tomography: Past, Present and Future. Microscopy and Microanalysis, 2020, 26, 652-654.	0.4	1
28	Organic Electronics: Spatial Mapping of Morphology and Electronic Properties of Air-Printed Pentacene Thin Films (Adv. Funct. Mater. 25/2014). Advanced Functional Materials, 2014, 24, 3906-3906.	14.9	0
29	Three-Dimensional Determination of the Coordinates of Individual Atoms in Materials. Microscopy and Microanalysis, 2016, 22, 916-917.	0.4	0
30	GENFIRE: A Generalized Fourier Iterative Reconstruction Algorithm for High-Resolution 3D Electron and X-ray Imaging. Microscopy and Microanalysis, 2017, 23, 128-129.	0.4	0
31	3D Imaging of Nanoalloy Catalysts at Atomic Resolution. Microscopy and Microanalysis, 2017, 23, 2032-2033.	0.4	0
32	Atomic Electron Tomography: Probing 3D Structure and Material Properties at the Single-Atom Level. Microscopy and Microanalysis, 2017, 23, 1886-1887.	0.4	0
33	GENFIRE: from Precisely Localizing Single Atoms in Materials to High Resolution 3D Imaging of Cellular Structures. Microscopy and Microanalysis, 2018, 24, 1446-1447.	0.4	0
34	Atomic Electron Tomography: Adding a New Dimension to See Single Atoms in Materials. Microscopy and Microanalysis, 2018, 24, 558-559.	0.4	0
35	3D Structure Determination of Pt-based Nanocatalysts at Atomic Resolution. Microscopy and Microanalysis, 2019, 25, 398-399.	0.4	0
36	4D Atomic Electron Tomography. Microscopy and Microanalysis, 2019, 25, 1814-1815.	0.4	0

3

YONGSOO YANG

#	Article	IF	CITATIONS
37	Data Acquisition in 4D Atomic Electron Tomography. Microscopy and Microanalysis, 2019, 25, 1816-1817.	0.4	O
38	Capturing the Atomic Coordinates of Surface and Subsurface Structure in 4D with Atomic Electron Tomography. Microscopy and Microanalysis, 2020, 26, 1794-1796.	0.4	0
39	Imaging Nucleation, Growth and Disorder at the Single-atom Level by Atomic Electron Tomography (AET). Microscopy and Microanalysis, 2020, 26, 1848-1850.	0.4	O