Jacques Fantini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1750663/publications.pdf Version: 2024-02-01

	34493	53065
9,743	54	89
citations	h-index	g-index
213	213	10184
docs citations	times ranked	citing authors
	citations 213	9,743 54 citations h-index 213 213

IACOLIES FANTINI

#	Article	IF	CITATIONS
1	Innovative treatment targeting gangliosides aimed at blocking the formation of neurotoxic α-synuclein oligomers in Parkinson's disease. Glycoconjugate Journal, 2022, 39, 1-11.	1.4	20
2	Ganglioside binding domains in proteins: Physiological and pathological mechanisms. Advances in Protein Chemistry and Structural Biology, 2022, 128, 289-324.	1.0	17
3	The puzzling mutational landscape of the SARSâ€2â€variant Omicron. Journal of Medical Virology, 2022, 94, 2019-2025.	2.5	63
4	Limited spread of a rare spike E484K-harboring SARS-CoV-2 in Marseille, France. Archives of Virology, 2022, 167, 583.	0.9	3
5	The epigenetic dimension of protein structure. Biomolecular Concepts, 2022, 13, 55-60.	1.0	10
6	Emergence in southern France of a new SARS-CoV-2 variant harbouring both N501Y and E484K substitutions in the spike protein. Archives of Virology, 2022, 167, 1185-1190.	0.9	39
7	The novel hamster-adapted SARS-CoV-2 Delta variant may be selectively advantaged in humans. Journal of Infection, 2022, 84, e53-e54.	1.7	9
8	First cases of infection with the 21L/BA.2 Omicron variant in Marseille, France. Journal of Medical Virology, 2022, 94, 3421-3430.	2.5	19
9	Culture and identification of a "Deltamicron―SARSâ€CoVâ€2 in a three cases cluster in southern France. Journal of Medical Virology, 2022, 94, 3739-3749.	2.5	58
10	Cholesterol-recognizing amino acid consensus motifs in transmembrane proteins: Comparative analysis of in silico studies and structural data. , 2022, , 127-145.		0
11	Structural Dynamics of the SARS-CoV-2 Spike Protein: A 2-Year Retrospective Analysis of SARS-CoV-2 Variants (from Alpha to Omicron) Reveals an Early Divergence between Conserved and Variable Epitopes. Molecules, 2022, 27, 3851.	1.7	12
12	Leveraging coronavirus binding to gangliosides for innovative vaccine and therapeutic strategies against COVID-19. Biochemical and Biophysical Research Communications, 2021, 538, 132-136.	1.0	47
13	Therapeutic and Vaccine Strategies for Stopping the COVID-19 Pandemic Based on Structural and Molecular Modeling Studies of Virus-Ganglioside Interactions. Methods in Pharmacology and Toxicology, 2021, , 273.	0.1	0
14	Structural dynamics of SARS-CoV-2 variants: A health monitoring strategy for anticipating Covid-19 outbreaks. Journal of Infection, 2021, 83, 197-206.	1.7	60
15	Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G strain and Delta variants. A potential risk for mass vaccination?. Journal of Infection, 2021, 83, 607-635.	1.7	35
16	Endocannabinoids Tune Intrinsic Excitability in O-LM Interneurons by Direct Modulation of Postsynaptic Kv7 Channels. Journal of Neuroscience, 2021, 41, 9521-9538.	1.7	17
17	Gene Therapy Strategy for Alzheimer's and Parkinson's Diseases Aimed at Preventing the Formation of Neurotoxic Oligomers in SH-SY5Y Cells. International Journal of Molecular Sciences, 2021, 22, 11550.	1.8	10
18	High Individual Heterogeneity of Neutralizing Activities against the Original Strain and Nine Different Variants of SARS-CoV-2. Viruses, 2021, 13, 2177.	1.5	21

#	Article	IF	CITATIONS
19	Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. International Journal of Antimicrobial Agents, 2020, 56, 106020.	1.1	87
20	Progress toward Alzheimer's disease treatment: Leveraging the Achilles' heel of AÎ ² oligomers?. Protein Science, 2020, 29, 1748-1759.	3.1	45
21	Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International Journal of Antimicrobial Agents, 2020, 55, 105960.	1.1	460
22	Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18098-18108.	3.3	38
23	Cholesterol-Recognition Motifs in Membrane Proteins. Advances in Experimental Medicine and Biology, 2019, 1135, 3-25.	0.8	67
24	Anandamide Revisited: How Cholesterol and Ceramides Control Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of a Lipid Neurotransmitter. Biomolecules, 2018, 8, 31.	1.8	37
25	How membrane lipids control the 3D structure and function of receptors. AIMS Biophysics, 2018, 5, 22-35.	0.3	6
26	The glycosphingolipid MacCer promotes synaptic bouton formation in Drosophila by interacting with Wnt. ELife, 2018, 7, .	2.8	20
27	Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins. Methods in Molecular Biology, 2017, 1583, 7-19.	0.4	21
28	Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells. Chemistry and Physics of Lipids, 2017, 205, 11-17.	1.5	9
29	Anandamide-ceramide interactions in a membrane environment: Molecular dynamic simulations data. Data in Brief, 2017, 14, 163-167.	0.5	8
30	Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors. Current Topics in Membranes, 2017, 80, 3-23.	0.5	56
31	A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. Scientific Reports, 2016, 6, 21907.	1.6	105
32	From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels. Progress in Lipid Research, 2016, 63, 1-13.	5.3	31
33	Common molecular mechanism of amyloid pore formation by Alzheimer's β-amyloid peptide and α-synuclein. Scientific Reports, 2016, 6, 28781.	1.6	137
34	Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 213-222.	1.8	19
35	Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chemistry and Physics of Lipids, 2016, 199, 52-60.	1.5	73
36	Comparison of the amyloid pore forming properties of rat and human Alzheimer's beta-amyloid peptide 1-42: Calcium imaging data. Data in Brief, 2016, 6, 640-643.	0.5	7

#	Article	IF	CITATIONS
37	Chemical Basis of Lipid Biochemistry. , 2015, , 1-28.		1
38	Variations of Brain Lipid Content. , 2015, , 87-108.		1
39	Brain Membranes. , 2015, , 29-51.		0
40	Lipid Metabolism and Oxidation in Neurons and Glial Cells. , 2015, , 53-85.		2
41	A Molecular View of the Synapse. , 2015, , 109-134.		0
42	Protein–Lipid Interactions in the Brain. , 2015, , 135-162.		0
43	Lipid Regulation of Receptor Function. , 2015, , 163-181.		10
44	Common Mechanisms in Neurodegenerative Diseases. , 2015, , 183-200.		1
45	Creutzfeldt–Jakob Disease. , 2015, , 201-222.		0
46	Viral and Bacterial Diseases. , 2015, , 279-311.		2
47	A Unifying Theory. , 2015, , 313-336.		5
48	Therapeutic Strategies for Neurodegenerative Diseases. , 2015, , 337-363.		4
49	Deciphering the Glycolipid Code of Alzheimer's and Parkinson's Amyloid Proteins Allowed the Creation of a Universal Ganglioside-Binding Peptide. PLoS ONE, 2014, 9, e104751.	1.1	48
50	Mechanism of cholesterolâ€assisted oligomeric channel formation by a short Alzheimer βâ€amyloid peptide. Journal of Neurochemistry, 2014, 128, 186-195.	2.1	79
51	Bexarotene Blocks Calcium-Permeable Ion Channels Formed by Neurotoxic Alzheimer's β-Amyloid Peptides. ACS Chemical Neuroscience, 2014, 5, 216-224.	1.7	60
52	CH–i̇́€ hydrogen bonds in biological macromolecules. Physical Chemistry Chemical Physics, 2014, 16, 12648-12683.	1.3	392
53	Interaction of Alzheimer's β-Amyloid Peptides with Cholesterol: Mechanistic Insights into Amyloid Pore Formation. Biochemistry, 2014, 53, 4489-4502.	1.2	125
54	A Cholesterol Recognition Motif in Human Phospholipid Scramblase 1. Biophysical Journal, 2014, 107, 1383-1392.	0.2	24

#	Article	IF	CITATIONS
55	Biochemical Identification of a Linear Cholesterol-Binding Domain within Alzheimer's β Amyloid Peptide. ACS Chemical Neuroscience, 2013, 4, 509-517.	1.7	73
56	The Driving Force of Alpha-Synuclein Insertion and Amyloid Channel Formation in the Plasma Membrane of Neural Cells: Key Role of Ganglioside- and Cholesterol-Binding Domains. Advances in Experimental Medicine and Biology, 2013, 991, 15-26.	0.8	63
57	Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Frontiers in Physiology, 2013, 4, 120.	1.3	86
58	How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Frontiers in Physiology, 2013, 4, 31.	1.3	391
59	A Glycosphingolipid Binding Domain Controls Trafficking and Activity of the Mammalian Notch Ligand Delta-Like 1. PLoS ONE, 2013, 8, e74392.	1.1	17
60	Selective transmigration of monocyte-associated HIV-1 across a human cervical monolayer and its modulation by seminal plasma. Aids, 2012, 26, 785-796.	1.0	16
61	A synthetic amino acid substitution of Tyr10 in $\hat{A^2}$ peptide sequence yields a dominant negative variant in amyloidogenesis. Aging Cell, 2012, 11, 530-541.	3.0	8
62	A New Putative Cholesterol-Recognition Motif in Transmembrane Proteins. Biophysical Journal, 2012, 102, 117a.	0.2	0
63	Sphingolipid-Binding Domain in the Serotonin1A Receptor. Advances in Experimental Medicine and Biology, 2012, 749, 279-293.	0.8	38
64	The fusogenic tilted peptide (67–78) of α-synuclein is a cholesterol binding domain. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2343-2351.	1.4	107
65	Molecular Basis for the Glycosphingolipid-Binding Specificity of α-Synuclein: Key Role of Tyrosine 39 in Membrane Insertion. Journal of Molecular Biology, 2011, 408, 654-669.	2.0	111
66	AβBehavior on Neuronal Membranes: Aggregation and Toxicities. International Journal of Alzheimer's Disease, 2011, 2011, 1-2.	1.1	6
67	Synthesis, gp120 binding and anti-HIV activity of fatty acid esters of 1,1-linked disaccharides. Bioorganic and Medicinal Chemistry, 2011, 19, 4803-4811.	1.4	6
68	Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Scientific Reports, 2011, 1, 69.	1.6	201
69	Biophysical studies of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic membranes: importance of the distribution coefficient in membrane selectivity. Chemistry and Physics of Lipids, 2010, 163, 131-140.	1.5	44
70	Notch ligand activity is modulated by glycosphingolipid membrane composition in <i>Drosophila melanogaster</i> . Journal of Cell Biology, 2010, 188, 581-594.	2.3	43
71	Mapping of Domains on HIV Envelope Protein Mediating Association with Calnexin and Protein-disulfide Isomerase. Journal of Biological Chemistry, 2010, 285, 13788-13796.	1.6	13
72	Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Reviews in Molecular Medicine, 2010, 12, e27.	1.6	153

#	Article	IF	CITATIONS
73	Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon, 2010, 56, 282-294.	0.8	154
74	Altered Ion Channel Formation by the Parkinson's-Disease-Linked E46K Mutant of α-Synuclein Is Corrected by GM3 but Not by GM1 Gangliosides. Journal of Molecular Biology, 2010, 397, 202-218.	2.0	61
75	Non-lipolytic and lipolytic sequence-related carboxylesterases: A comparative study of the structure–function relationships of rabbit liver esterase 1 and bovine pancreatic bile-salt-activated lipase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1195-1204.	1.2	11
76	How Cholesterol Constrains Glycolipid Conformation for Optimal Recognition of Alzheimer's β Amyloid Peptide (Aβ1-40). PLoS ONE, 2010, 5, e9079.	1.1	101
77	The first extracellular domain of the tumour stem cell marker CD133 contains an antigenic ganglioside-binding motif. Cancer Letters, 2009, 278, 164-173.	3.2	77
78	Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2345-2361.	1.4	208
79	The Insertion and Transport of Anandamide in Synthetic Lipid Membranes Are Both Cholesterol-Dependent. PLoS ONE, 2009, 4, e4989.	1.1	48
80	The extracellular glycosphingolipid-binding motif of Fas defines its internalization route, mode and outcome of signals upon activation by ligand. Cell Death and Differentiation, 2008, 15, 1824-1837.	5.0	57
81	Glycoside analogs of $\hat{1}^2$ -galactosylceramide, a novel class of small molecule antiviral agents that inhibit HIV-1 entry. Antiviral Research, 2008, 80, 54-61.	1.9	35
82	Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-11 ² effect and increase in the transepithelial passage of commensal bacteria. Toxicology and Applied Pharmacology, 2008, 228, 84-92.	1.3	141
83	Squalamine: An Appropriate Strategy against the Emergence of Multidrug Resistant Gram-Negative Bacteria?. PLoS ONE, 2008, 3, e2765.	1.1	56
84	Controlled aggregation of adenine by sugars: physicochemical studies, molecular modelling simulations of sugar–aromatic CH–l€ stacking interactions, and biological significance. Physical Chemistry Chemical Physics, 2008, 10, 2792.	1.3	40
85	Intestinal absorption of the acetamiprid neonicotinoid by Caco-2 cells: Transepithelial transport, cellular uptake and efflux. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43, 261-270.	0.7	23
86	Interaction of Proteins with Lipid Rafts Through Glycolipid-Binding Domains:Biochemical Background and Potential Therapeutic Applications. Current Medicinal Chemistry, 2007, 14, 2911-2917.	1.2	41
87	Selective transport of staphylococcal enterotoxin A through in vitro generated human M cells. Microbes and Infection, 2007, 9, 1507-1510.	1.0	9
88	Prediction of Glycolipid-Binding Domains from the Amino Acid Sequence of Lipid Raft-Associated Proteins:Â Application to HpaA, a Protein Involved in the Adhesion ofHelicobacter pylorito Gastrointestinal Cells. Biochemistry, 2006, 45, 10957-10962.	1.2	65
89	Cell penetration properties of maurocalcine, a natural venom peptide active on the intracellular ryanodine receptor. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 308-319.	1.4	53
90	A novel soluble mimic of the glycolipid, globotriaosyl ceramide inhibits HIV infection. Aids, 2006, 20, 333-343.	1.0	60

#	Article	IF	CITATIONS
91	The minimal amyloid-forming fragment of the islet amyloid polypeptide is a glycolipid-binding domain. FEBS Journal, 2006, 273, 5724-5735.	2.2	47
92	C-Glycoside analogues of β-galactosylceramide with a simple ceramide substitute: Synthesis and binding to HIV-1 gp120. Bioorganic and Medicinal Chemistry, 2006, 14, 1182-1188.	1.4	24
93	Cellular isoform of the prion protein PrPc in human intestinal cell lines: Genetic polymorphism at codon 129, mRNA quantification and protein detection in lipid rafts. Cell Biology International, 2006, 30, 559-567.	1.4	5
94	Structural analysis of reverse transcriptase mutations at codon 215 explains the predominance of T215Y over T215F in HIV-1 variants selected under antiretroviral therapy. Journal of Biomedical Science, 2005, 12, 701-710.	2.6	14
95	Interaction of cholesterol with sphingosine. Journal of Lipid Research, 2005, 46, 36-45.	2.0	78
96	Apical uptake and transepithelial transport of sphingosine monomers through intact human intestinal epithelial cells: Physicochemical and molecular modeling studies. Archives of Biochemistry and Biophysics, 2005, 440, 91-100.	1.4	26
97	The Combinatorial Extension Method Reveals a Sphingolipid Binding Domain on Pancreatic Bile Salt-Dependent Lipase. Structure, 2004, 12, 1437-1447.	1.6	24
98	Human intestinal absorption of imidacloprid with Caco-2 cells as enterocyte model. Toxicology and Applied Pharmacology, 2004, 194, 1-9.	1.3	73
99	Rafts and related glycosphingolipid-enriched microdomains in the intestinal epithelium: bacterial targets linked to nutrient absorption. Advanced Drug Delivery Reviews, 2004, 56, 779-794.	6.6	47
100	The virotoxin model of HIV-1 enteropathy: Involvement of GPR15/Bob and galactosylceramide in the cytopathic effects induced by HIV-1 gp120 in the HT-29-D4 intestinal cell line. Journal of Biomedical Science, 2003, 10, 156-166.	2.6	52
101	Resistance of HIV-1 to multiple antiretroviral drugs in France. Aids, 2003, 17, 2383-2388.	1.0	74
102	Resistance of HIV-1 to multiple antiretroviral drugs in France: a 6-year survey (1997-2002) based on an analysis of over 7000 genotypes. Aids, 2003, 17, 2383-8.	1.0	31
103	Identification of a Common Sphingolipid-binding Domain in Alzheimer, Prion, and HIV-1 Proteins. Journal of Biological Chemistry, 2002, 277, 11292-11296.	1.6	209
104	A novel soluble analog of the HIV-1 fusion cofactor, globotriaosylceramide (Gb3), eliminates the cholesterol requirement for high affinity gp120/Gb3 interaction. Journal of Lipid Research, 2002, 43, 1670-1679.	2.0	62
105	Lipid rafts: structure, function and role in HIV, Alzheimer's and prion diseases. Expert Reviews in Molecular Medicine, 2002, 4, 1-22.	1.6	200
106	pH-Dependent Interaction of Fumonisin B1 with Cholesterol: Physicochemical and Molecular Modeling Studies at the Airâ^'Water Interface. Journal of Agricultural and Food Chemistry, 2002, 50, 327-331.	2.4	27
107	The Mycotoxin Deoxynivalenol Affects Nutrient Absorption in Human Intestinal Epithelial Cells. Journal of Nutrition, 2002, 132, 2723-2731.	1.3	179
108	A post-CD4-binding step involving interaction of the V3 region of viral gp120 with host cell surface glycosphingolipids is common to entry and infection by diverse HIV-1 strains. Antiviral Research, 2002, 56, 233-251.	1.9	37

#	Article	IF	CITATIONS
109	Asymmetric Synthesis of Water-Soluble Analogues of Galactosylceramide, an HIV-1 Receptor: New Tools to Study Virus–Glycolipid Interactions. ChemBioChem, 2002, 3, 517.	1.3	26
110	The Mycotoxin Patulin Alters the Barrier Function of the Intestinal Epithelium: Mechanism of Action of the Toxin and Protective Effects of Glutathione. Toxicology and Applied Pharmacology, 2002, 181, 209-218.	1.3	185
111	Characterization of Galactosyl Glycerolipids in the HT29 Human Colon Carcinoma Cell Line. Archives of Biochemistry and Biophysics, 2001, 396, 187-198.	1.4	10
112	Gp120-Induced Bob/GPR15 Activation. American Journal of Pathology, 2001, 159, 1933-1939.	1.9	58
113	Comparison of two commercial assays for the detection of insertion mutations of HIV-1 reverse transcriptase. Journal of Clinical Virology, 2001, 21, 153-162.	1.6	7
114	Amphiphilic Anionic Analogues of Galactosylceramide:Â Synthesis, Anti-HIV-1 Activity, and gp120 Binding. Journal of Medicinal Chemistry, 2001, 44, 2188-2203.	2.9	15
115	The Mycotoxin Ochratoxin A Alters Intestinal Barrier and Absorption Functions but Has No Effect on Chloride Secretion. Toxicology and Applied Pharmacology, 2001, 176, 54-63.	1.3	73
116	Use of Drug Resistance Sequence Data for the Systematic Detection of Nonâ€B Human Immunodeficiency Virus Type 1 (HIVâ€1) Subtypes: How to Create a Sentinel Site for Monitoring the Genetic Diversity of HIVâ€1 at a Country Scale. Journal of Infectious Diseases, 2001, 183, 1311-1317.	1.9	47
117	Genetic Analysis of HIV Type 1 Strains in Bujumbura (Burundi): Predominance of Subtype C Variant. AIDS Research and Human Retroviruses, 2001, 17, 269-273.	0.5	17
118	Mutations in HIV-1 gag cleavage sites and their association with protease mutations. Aids, 2001, 15, 526-528.	1.0	11
119	Secondary structure predictions of HIV-1 reverse transcriptase provide new insights into the development of drug-resistance genotypes. Aids, 2001, 15, 1191-1192.	1.0	4
120	[49] Synthetic soluble analogs of glycolipids for studies of virus-glycolipid interactions. Methods in Enzymology, 2000, 311, 626-638.	0.4	11
121	Reconstitution of Sphingolipid–Cholesterol Plasma Membrane Mlcrodomalns for Studies of Virus-Glycolipid Interactions. Methods in Enzymology, 2000, 312, 495-506.	0.4	14
122	Glycosphingolipides et fusion virus-cellule : données actuelles montrant le rÃ1e des micro-domaines membranaires dans le cycle d'infection du VIH-1. Oleagineux Corps Gras Lipides, 2000, 7, 449-455.	0.2	0
123	Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity. Carbohydrate Research, 2000, 327, 223-260.	1.1	24
124	Synthesis of glycolipid analogues that disrupt binding of HIV-1 gp120 to galactosylceramide. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1011-1014.	1.0	29
125	Total synthesis of mololipids: A new series of anti-HIV Moloka'iamine derivatives. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2679-2681.	1.0	9
126	Multidrug Resistance Genotypes (Insertions in the β3–β4 Finger Subdomain and MDR Mutations) of HIV-1 Reverse Transcriptase from Extensively Treated Patients: Incidence and Association with Other Resistance Mutations. Virology, 2000, 270, 310-316.	1.1	58

#	Article	IF	CITATIONS
127	Role of glycosphingolipid microdomains in CD4-dependent HIV-1 fusion. Glycoconjugate Journal, 2000, 17, 199-204.	1.4	57
128	Glycosphingolipid (GSL) microdomains as attachment platforms for host pathogens and their toxins on intestinal epithelial cells: activation of signal transduction pathways and perturbations of intestinal absorption and secretion. Glycoconjugate Journal, 2000, 17, 173-179.	1.4	57
129	Mutation L210W of HIV-1 reverse transcriptase in patients receiving combination therapy. Journal of Biomedical Science, 2000, 7, 507-513.	2.6	37
130	Human Erythrocyte Glycosphingolipids as Alternative Cofactors for Human Immunodeficiency Virus Type 1 (HIV-1) Entry: Evidence for CD4-Induced Interactions between HIV-1 gp120 and Reconstituted Membrane Microdomains of Glycosphingolipids (Gb3 and GM3). Journal of Virology, 1999, 73, 5244-5248.	1.5	133
131	Genetic polymorphism near HIV-1 reverse transcriptase resistance-associated codons is a major obstacle for the line probe assay as an alternative method to sequence analysis. Journal of Virological Methods, 1999, 80, 25-31.	1.0	24
132	Mutation Patterns of the Reverse Transcriptase and Protease Genes in Human Immunodeficiency Virus Type 1-Infected Patients Undergoing Combination Therapy: Survey of 787 Sequences. Journal of Clinical Microbiology, 1999, 37, 4099-4106.	1.8	105
133	Comparison of Human Immunodeficiency Virus Type 1 (HIV-1) Protease Mutations in HIV-1 Genomes Detected in Plasma and in Peripheral Blood Mononuclear Cells from Patients Receiving Combination Drug Therapy. Journal of Clinical Microbiology, 1999, 37, 1595-1597.	1.8	22
134	Sulfatide Inhibits HIV-1 Entry into CD4â^'/CXCR4+Cells. Virology, 1998, 246, 211-220.	1.1	50
135	Clycolipids as potential binding sites for HIV: topology in the sperm plasma membrane in relation to the regulation of membrane fusion. Journal of Reproductive Immunology, 1998, 41, 233-253.	0.8	25
136	Sequential Interaction of CD4 and HIV-1 gp120 with a Reconstituted Membrane Patch of Ganglioside GM3: Implications for the Role of Glycolipids as Potential HIV-1 Fusion Cofactors. Biochemical and Biophysical Research Communications, 1998, 246, 117-122.	1.0	63
137	Specific Interaction of HIV-1 and HIV-2 Surface Envelope Glycoproteins with Monolayers of Galactosylceramide and Ganglioside GM3. Journal of Biological Chemistry, 1998, 273, 7967-7971.	1.6	137
138	HIV-1-Induced Perturbations of Glycosphingolipid Metabolism Are Cell-Specific and Can Be Detected at Early Stages of HIV-1 Infection. Journal of Acquired Immune Deficiency Syndromes, 1998, 19, 221-229.	0.3	21
139	Stable rearrangements of the β3–β4 hairpin loop of HIV-1 reverse transcriptase in plasma viruses from patients receiving combination therapy. Aids, 1998, 12, F161-F166.	1.0	40
140	Synthetic Soluble Analogs of Galactosylceramide (GalCer) Bind to the V3 Domain of HIV-1 gp120 and Inhibit HIV-1-induced Fusion and Entry. Journal of Biological Chemistry, 1997, 272, 7245-7252.	1.6	110
141	Perturbations of glucose metabolism associated with HIV infection in human intestinal epithelial cells. Aids, 1997, 11, 147-155.	1.0	22
142	Co-expression of CXCR4/fusin and galactosylceramide in the human intestinal epithelial cell line HT-29. Aids, 1997, 11, 1311-1318.	1.0	86
143	Quantification of HIV-1 viral load in lymphoid and blood cells. Aids, 1997, 11, 895-901.	1.0	61
144	Direct Effect of Type 1 Human Immunodeficiency Virus (HIV-1) on Intestinal Epithelial Cell Differentiation: Relationship to HIV-1 Enteropathy. Virology, 1997, 238, 231-242.	1.1	47

#	Article	IF	CITATIONS
145	SPC3, a V3 Loop-Derived Synthetic Peptide Inhibitor of HIV-1 Infection, Binds to Cell Surface Glycosphingolipidsâ€. Biochemistry, 1996, 35, 15663-15671.	1.2	63
146	Co-localization of suramin and serum albumin in lysosomes of suramin-treated human colon cancer cells. Cancer Letters, 1996, 101, 179-184.	3.2	3
147	Morphological alterations associated with HIV infection of CD4â^'/GalCer+ human intestinal epithelial cells. Journal of Computer - Aided Molecular Design, 1996, 5, 73-82.	1.0	0
148	Genetic determinants controlling HIV-1 tropism for CD4â^'/GalCer+ human intestinal epithelial cells. Journal of Computer - Aided Molecular Design, 1996, 5, 161-168.	1.0	5
149	Galactosylceramide and transmembrane signalling in enterocytes: Calcium response induced by HIV-1 surface-envelope glycoprotein gp120. Journal of Computer - Aided Molecular Design, 1996, 5, 181-191.	1.0	1
150	Detection of functional galactosylceramide (GalCer) receptors on CD4-negative HIV-1 target cells. Journal of Computer - Aided Molecular Design, 1996, 5, 192-202.	1.0	3
151	Suramin: A polysulfonated compound that inhibits the binding of HIV-1 gp120 to GalCer/sulfatide and blocks the CD4-independent pathway of HIV-1 infection in mucosal epithelial cells. Journal of Computer - Aided Molecular Design, 1996, 5, 225-233.	1.0	2
152	V3 loop-derived multibranched peptides as inhibitors of HIV infection in CD4+ and CD4â^' cells. Journal of Computer - Aided Molecular Design, 1996, 5, 243-250.	1.0	4
153	A New Method for the Determination of Specific 13C Enrichment in Phosphorylated [1-13C]glucose Metabolites. 13C-coupled, 1H-decoupled 31P -NMR Spectroscopy of Tissue Perchloric Acid Extracts. FEBS Journal, 1996, 238, 470-475.	0.2	14
154	Analysis of individual purine and pyrimidine nucleoside di- and triphosphates and other cellular metabolites in PCA extracts by using multinuclear high resolution NMR spectroscopy. Magnetic Resonance in Medicine, 1996, 36, 788-795.	1.9	13
155	SPC3, a synthetic peptide derived from the V3 domain of human immunodeficiency virus type 1 (HIV-1) gp120, inhibits HIV-1 entry into CD4+ and CD4- cells by two distinct mechanisms Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4867-4871.	3.3	44
156	Characterization of an electrogenic sodium/glucose cotransporter in a human colon epithelial cell line. Journal of Cellular Physiology, 1995, 163, 120-128.	2.0	19
157	Production of a highly cytopathic HIV-1 isolate from a human mucosal epithelial cell line cultured on microcarrier beads in serum-free medium. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 62-66.	0.7	4
158	SPC3, a nontoxic peptide inhibitor of HIV infection. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 415-418.	0.7	2
159	Intracellular calcium release induced by human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein in human intestinal epithelial cells: a putative mechanism for HIV-1 enteropathy. Cell Calcium, 1995, 18, 9-18.	1.1	46
160	The Development of Na+-dependent Glucose Transport during Differentiation of an Intestinal Epithelial Cell Clone Is Regulated by Protein Kinase C. Journal of Biological Chemistry, 1995, 270, 12536-12541.	1.6	34
161	Synthetic multimeric peptides derived from the principal neutralization domain (V3 loop) of human immunodeficiency virus type 1 (HIV-1) gp120 bind to galactosylceramide and block HIV-1 infection in a human CD4-negative mucosal epithelial cell line. Journal of Virology, 1995, 69, 320-325.	1.5	75
162	Binding of Human Immunodeficiency Virus Type I (HIV-1) Gp120 to Galactosylceramide (GalCer): Relationship to the V3 Loop. Virology, 1994, 201, 206-214.	1.1	119

#	Article	IF	CITATIONS
163	Interferon-Î ³ Decreases Cell Surface Expression of Galactosyl Ceramide, the Receptor for HIV-1 GP120 on Human Colonic Epithelial Cells. Virology, 1994, 204, 550-557.	1.1	30
164	Physical contact with lymphocytes is required for reactivation of dormant HIV-1 in colonic epithelial cells: involvement of the HIV-1 LTR. Virus Research, 1994, 34, 1-13.	1.1	11
165	GalCer, CD26 and HIV infection of intestinal epithelial cells. Aids, 1994, 8, 1347-1348.	1.0	17
166	Multibranched V3 peptides inhibit human immunodeficiency virus infection in human lymphocytes and macrophages. Journal of Virology, 1994, 68, 5714-5720.	1.5	40
167	Polarized distribution of ? interferon-stimulated MHC antigens and transferrin receptors in a clonal cell line isolated from Fisher rat thyroid (FRT cells). Cell and Tissue Research, 1993, 272, 23-31.	1.5	5
168	Autoradiographic localization of tritiated suramin in polarized human colon adenocarcinoma cells. Cancer Letters, 1993, 75, 151-156.	3.2	8
169	Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 receptor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2700-2704.	3.3	264
170	Insulin like growth factor I is an autocrine regulator of human colon cancer cell differentiation and growth. Cancer Letters, 1992, 62, 23-33.	3.2	43
171	Energetic metabolism of glucose, mannose and galactose in glucose-starved rat insulinoma cells anchored on microcarrier beads. A phosphorus-31 NMR study. Biochimie, 1992, 74, 949-955.	1.3	11
172	Tumor necrosis factor-α stimulates both apical and basal production of HIV in polarized human intestinal HT29 cells. Immunology Letters, 1992, 34, 85-90.	1.1	8
173	Structural variability ofenv andgag gene products from a highly cytopathic strain of HIV-1. Archives of Virology, 1992, 125, 287-298.	0.9	16
174	Short-term suramin treatment followed by the removal of the drug induces terminal differentiation of HT29-D4 cells. Journal of Cellular Physiology, 1992, 150, 168-174.	2.0	7
175	Inhibition of human immunodeficiency virus infection in human colon epithelial cells by recombinant interferon-Î ³ . European Journal of Immunology, 1992, 22, 2495-2499.	1.6	12
176	Human colon epithelial cells productively infected with human immunodeficiency virus show impaired differentiation and altered secretion. Journal of Virology, 1992, 66, 580-585.	1.5	67
177	Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. Journal of Virology, 1992, 66, 4848-4854.	1.5	236
178	Double screening of suramin derivatives on human colon cancer cells and on neural cells provides new therapeutic agents with reduced toxicity. Cancer Letters, 1991, 60, 213-219.	3.2	12
179	Human T-lymphoblastoid cells selected for growth in serum-free medium provide new tools for study of HIV replication and cytopathogenicity. Journal of Virological Methods, 1991, 34, 193-207.	1.0	11
180	Vectorial release of carcinoembryonic antigen induced by IFN-γ in human colon cancer cells cultured in serum-free medium. European Journal of Cancer & Clinical Oncology, 1991, 27, 599-604.	0.9	7

#	Article	IF	CITATIONS
181	Selected human immunodeficiency virus replicates preferentially through the basolateral surface of differentiated human colon epithelial cells. Virology, 1991, 185, 904-907.	1.1	39
182	Kinetics of biochemical, electrophysiological and morphological events (including lysosomal) Tj ETQq0 0 0 rgB clone HT29-D4. International Journal of Cancer, 1991, 49, 608-615.	T /Overlock 2.3	10 Tf 50 707 6
183	Combination of culture on collagen gels and glucose starvation for cloning human colon cancer cells. Cytotechnology, 1991, 5, 117-127.	0.7	2
184	Human immunodeficiency virus can infect the apical and basolateral surfaces of human colonic epithelial cells Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9297-9301.	3.3	92
185	A suramin derivative induces enterocyte-like differentiation of human colon cancer cells without lysosomal storage disorder. Anti-Cancer Drugs, 1990, 1, 59-66.	0.7	8
186	Effect of vip on the glycogen metabolism of human colon adenocarcinoma cells studied by13C nuclear magnetic resonance spectroscopy. International Journal of Cancer, 1990, 45, 168-173.	2.3	10
187	Suramin inhibits proliferation of rat glioma cells and alters N-cam cell surface expression. International Journal of Cancer, 1990, 45, 554-561.	2.3	43
188	Production of insulin-like growth factor II (IGF-II) and different forms of IGF-binding proteins by HT-29 human colon carcinoma cell line. Journal of Cellular Physiology, 1990, 143, 405-415.	2.0	40
189	Impaired carcinoembryonic antigen release during the process of suramin-induced differentiation of the human colic adenocarcinoma cell clone HT29-D4. Journal of Cellular Physiology, 1990, 143, 468-474.	2.0	3
190	The concentration of glucose in the culture medium determines the effect of suramin on the growth and differentiation of the human colonic adenocarcinoma cell clone HT29-D4. Cancer Letters, 1990, 53, 109-115.	3.2	6
191	Suramin-induced differentiation of the human colic adenocarcinoma cell clone HT29-D4 in serum-free medium. Experimental Cell Research, 1990, 189, 109-117.	1.2	20
192	CD4 molecules are restricted to the basolateral membrane domain of in vitro differentiated human colon cancer cells (HT29-D4). FEBS Letters, 1990, 265, 75-79.	1.3	9
193	Induction of polarized apical expression and vectorial release of carcinoembryonic antigen (CEA) during the process of differentiation of HT29-D4 cells. Journal of Cellular Physiology, 1989, 141, 126-134.	2.0	47
194	Metabolic changes in undifferentiated and differentiated human colon adenocarcinoma cells studied by multinuclear magnetic resonance spectroscopy. Biochimie, 1989, 71, 949-961.	1.3	56
195	Phosphorus-31 nuclear magnetic resonance study of the C6 glioma cell line cultured on microcarrier beads. Brain Research, 1989, 493, 175-178.	1.1	11
196	In vitro differentiated HT 29-D4 clonal cell line generates leakproof and electrically active monolayers when cultured in porous-bottom culture dishes. Biology of the Cell, 1989, 65, 163-169.	0.7	24
197	In vitro differentiated HT 29-D4 clonal cell line generates leakproof and electrically active monolayers when cultured in porous-bottom culture dishes. Biology of the Cell, 1989, 65, 163-169.	0.7	4
198	The Glycoprotein Nature of the Vasoactive Intestinal Peptide Binding Site. Role of Carbohydrates in VIP Binding on HT 29-D4 Cells. Annals of the New York Academy of Sciences, 1988, 527, 667-671.	1.8	7

#	Article	IF	CITATIONS
199	Cycloheximide induces accumulation of vasoactive intestinal peptide (VIP) binding sites at the cell surface of a human colonic adenocarcinoma cell line (HT29-D4). Evidence for the presence of an intracellular pool of VIP receptors. FEBS Journal, 1987, 167, 391-396.	0.2	11
200	Covalent cross-linking of vasoactive intestinal peptide (VIP) to its receptor in intact colonic adenocarcinoma cells in culture (HT 29). FEBS Journal, 1985, 151, 411-417.	0.2	57