Mitchell A Lazar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1750451/publications.pdf Version: 2024-02-01

	22548	26792
21,573	61	111
citations	h-index	g-index
117	117	30905
117	11/	50505
docs citations	times ranked	citing authors
	21,573 citations 117 docs citations	22548 61 h-index

#	Article	IF	CITATIONS
1	Isoform-specific functions of PPARÎ ³ in gene regulation and metabolism. Genes and Development, 2022, 36, 300-312.	2.7	16
2	Circadian Regulation of Gene Expression and Metabolism in the Liver. Seminars in Liver Disease, 2022, 42, 113-121.	1.8	7
3	Phosphorylated MED1 links transcription recycling and cancer growth. Nucleic Acids Research, 2022, 50, 4450-4463.	6.5	2
4	Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD+ biosynthesis and sustain cardiac function. , 2022, 1, 45-58.		25
5	Nicotinamide Riboside Improves Cardiac Function and Prolongs Survival After Disruption of the Cardiomyocyte Clock. Frontiers in Molecular Medicine, 2022, 2, .	0.6	5
6	Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Molecular Metabolism, 2021, 50, 101119.	3.0	27
7	Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice. Journal of Clinical Investigation, 2021, 131, .	3.9	23
8	A coregulator shift, rather than the canonical switch, underlies thyroid hormone action in the liver. Genes and Development, 2021, 35, 367-378.	2.7	22
9	Liver Transcriptome Dynamics During Hibernation Are Shaped by a Shifting Balance Between Transcription and RNA Stability. Frontiers in Physiology, 2021, 12, 662132.	1.3	11
10	Interconnections between circadian clocks and metabolism. Journal of Clinical Investigation, 2021, 131, .	3.9	63
11	Individual-specific functional epigenomics reveals genetic determinants of adverse metabolic effects of glucocorticoids. Cell Metabolism, 2021, 33, 1592-1609.e7.	7.2	15
12	REV-ERB nuclear receptors in the suprachiasmatic nucleus control circadian period and restrict diet-induced obesity. Science Advances, 2021, 7, eabh2007.	4.7	18
13	Using GRO-Seq to Measure Circadian Transcription and Discover Circadian Enhancers. Methods in Molecular Biology, 2021, 2130, 127-148.	0.4	4
14	The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science, 2020, 369, 1388-1394.	6.0	103
15	Dichotomous engagement of HDAC3 activity governs inflammatory responses. Nature, 2020, 584, 286-290.	13.7	89
16	Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocrine Reviews, 2020, 41, 707-732.	8.9	66
17	HDAC3 ensures stepwise epidermal stratification via NCoR/SMRT-reliant mechanisms independent of its histone deacetylase activity. Genes and Development, 2020, 34, 973-988.	2.7	20
18	Early B Cell Factor Activity Controls Developmental and Adaptive Thermogenic Gene Programming in Adipocytes. Cell Reports, 2020, 30, 2869-2878.e4.	2.9	36

#	Article	IF	CITATIONS
19	Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell, 2019, 178, 686-698.e14.	13.5	718
20	Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18691-18699.	3.3	45
21	Identification of <i>C2CD4A</i> as a human diabetes susceptibility gene with a role in β cell insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20033-20042.	3.3	38
22	SR9009 has REV-ERB–independent effects on cell proliferation and metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12147-12152.	3.3	108
23	Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nature Medicine, 2019, 25, 507-516.	15.2	79
24	Shining light on dark matter in the genome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24919-24921.	3.3	3
25	Patient Adipose Stem Cell-Derived Adipocytes Reveal Genetic Variation that Predicts Antidiabetic Drug Response. Cell Stem Cell, 2019, 24, 299-308.e6.	5.2	27
26	Integrative regulation of physiology by histone deacetylase 3. Nature Reviews Molecular Cell Biology, 2019, 20, 102-115.	16.1	116
27	Induction of α cell–restricted Gc in dedifferentiating β cells contributes to stress-induced β cell dysfunction. JCl Insight, 2019, 4, .	2.3	24
28	MON-LB017 Natural Genetic Variation in Humans Determines Basal and PPAR-Inducible Expression of PM20D1, a Putative Thermogenic Gene. Journal of the Endocrine Society, 2019, 3, .	0.1	0
29	Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription. Science, 2018, 359, 1274-1277.	6.0	171
30	Toxicity of overexpressed MeCP2 is independent of HDAC3 activity. Genes and Development, 2018, 32, 1514-1524.	2.7	23
31	Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5096-E5105.	3.3	280
32	βâ€Adrenergic receptors control brown adipose UCPâ€1 tone and cold response without affecting its circadian rhythmicity. FASEB Journal, 2018, 32, 5640-5646.	0.2	27
33	Diet-Induced Circadian Enhancer Remodeling Synchronizes Opposing Hepatic Lipid Metabolic Processes. Cell, 2018, 174, 831-842.e12.	13.5	150
34	PPARÎ ³ is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes and Development, 2018, 32, 1035-1044.	2.7	84
35	Nighttime light exposure enhances Rev-erbα-targeting microRNAs and contributes to hepatic steatosis. Metabolism: Clinical and Experimental, 2018, 85, 250-258.	1.5	19
36	A noncanonical PPARÎ ³ /RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6039-E6047.	3.3	27

#	Article	IF	CITATIONS
37	Reversing the curse on PPARÎ ³ . Journal of Clinical Investigation, 2018, 128, 2202-2204.	3.9	14
38	Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355, 748-752.	6.0	434
39	Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends in Endocrinology and Metabolism, 2017, 28, 497-505.	3.1	278
40	Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature, 2017, 546, 544-548.	13.7	149
41	Deletion of histone deacetylase 3 in adult beta cells improves glucose tolerance via increased insulin secretion. Molecular Metabolism, 2017, 6, 30-37.	3.0	44
42	Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion. Nature Medicine, 2017, 23, 223-234.	15.2	90
43	Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell, 2017, 171, 573-587.e14.	13.5	162
44	An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides. Nature Communications, 2017, 8, 549.	5.8	52
45	The hepatic circadian clock fine-tunes the lipogenic response to feeding through RORÎ \pm /Î 3 . Genes and Development, 2017, 31, 1202-1211.	2.7	64
46	Human resistin protects against endotoxic shock by blocking LPS–TLR4 interaction. Proceedings of the United States of America, 2017, 114, E10399-E10408.	3.3	51
47	Targeting PPARÎ ³ in the epigenome rescues genetic metabolic defects in mice. Journal of Clinical Investigation, 2017, 127, 1451-1462.	3.9	47
48	Maturing of the nuclear receptor family. Journal of Clinical Investigation, 2017, 127, 1123-1125.	3.9	60
49	Genetic and epigenomic mechanisms of mammalian circadian transcription. Nature Structural and Molecular Biology, 2016, 23, 1045-1052.	3.6	80
50	Genetic backgrounds determine brown remodeling of white fat in rodents. Molecular Metabolism, 2016, 5, 948-958.	3.0	25
51	Circadian time signatures of fitness and disease. Science, 2016, 354, 994-999.	6.0	472
52	HNF6 and Rev-erbα integrate hepatic lipid metabolism by overlapping and distinct transcriptional mechanisms. Genes and Development, 2016, 30, 1636-1644.	2.7	49
53	Physiological Suppression of Lipotoxic Liver DamageÂby Complementary Actions of HDAC3 andÂSCAP/SREBP. Cell Metabolism, 2016, 24, 863-874.	7.2	59
54	The Nuclear Receptor Rev-erbα Regulates Adipose Tissue-specific FGF21 Signaling. Journal of Biological Chemistry, 2016, 291, 10867-10875.	1.6	29

#	Article	IF	CITATIONS
55	Lactate Dehydrogenase C Produces S-2-Hydroxyglutarate in Mouse Testis. ACS Chemical Biology, 2016, 11, 2420-2427.	1.6	37
56	HDAC3-Dependent Epigenetic Pathway Controls Lung Alveolar Epithelial Cell Remodeling and Spreading via miR-17-92 and TGF-1² Signaling Regulation. Developmental Cell, 2016, 36, 303-315.	3.1	85
57	Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch. Developmental Cell, 2016, 36, 316-330.	3.1	90
58	ATF4 licenses C/EBPβ activity in human mesenchymal stem cells primed for adipogenesis. ELife, 2015, 4, e06821.	2.8	45
59	Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science, 2015, 348, 1488-1492.	6.0	268
60	Genetic Variation Determines PPARÎ ³ Function and Anti-diabetic Drug Response InÂVivo. Cell, 2015, 162, 33-44.	13.5	107
61	Macrophage-Derived Human Resistin Is Induced in Multiple Helminth Infections and Promotes Inflammatory Monocytes and Increased Parasite Burden. PLoS Pathogens, 2015, 11, e1004579.	2.1	43
62	Circadian Metabolism in the Light of Evolution. Endocrine Reviews, 2015, 36, 289-304.	8.9	131
63	Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Research, 2015, 25, 836-844.	2.4	146
64	Dissecting the Rev-erbα Cistrome and the Mechanisms Controlling Circadian Transcription in Liver. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 233-238.	2.0	18
65	MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metabolism, 2015, 22, 1009-1019.	7.2	217
66	Histone deacetylase 3 modulates Tbx5 activity to regulate early cardiogenesis. Human Molecular Genetics, 2014, 23, 3801-3809.	1.4	29
67	PPARÎ ³ and the global map of adipogenesis and beyond. Trends in Endocrinology and Metabolism, 2014, 25, 293-302.	3.1	469
68	Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARÎ ³ -driven enhancers. Genes and Development, 2014, 28, 1018-1028.	2.7	88
69	Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription InÂVivo. Cell, 2014, 159, 1140-1152.	13.5	200
70	Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Molecular Medicine, 2014, 6, 1124-1132.	3.3	140
71	Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 2014, 516, 112-115.	13.7	412
72	Nuclear receptor Rev-erbα: up, down, and all around. Trends in Endocrinology and Metabolism, 2014, 25, 586-592.	3.1	133

#	Article	IF	CITATIONS
73	Behavioral Changes and Dopaminergic Dysregulation in Mice Lacking the Nuclear Receptor Rev-erbα. Molecular Endocrinology, 2014, 28, 490-498.	3.7	64
74	Integrator Regulates Transcriptional Initiation and Pause Release following Activation. Molecular Cell, 2014, 56, 128-139.	4.5	147
75	Thiazolidinediones and the Promise of Insulin Sensitization in Type 2 Diabetes. Cell Metabolism, 2014, 20, 573-591.	7.2	389
76	Adenylyl Cyclase-Associated Protein 1 Is a Receptor for Human Resistin and Mediates Inflammatory Actions of Human Monocytes. Cell Metabolism, 2014, 19, 484-497.	7.2	213
77	Deacetylase-Independent Function of HDAC3 in Transcription and Metabolism Requires Nuclear Receptor Corepressor. Molecular Cell, 2013, 52, 769-782.	4.5	208
78	Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3Âin vivo. Nature Structural and Molecular Biology, 2013, 20, 182-187.	3.6	164
79	The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature, 2013, 503, 410-413.	13.7	228
80	Nuclear factor-κB binding motifs specify Toll-like receptor-induced gene repression through an inducible repressosome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14140-14145.	3.3	81
81	Rev-erbÎ \pm and Rev-erbÎ 2 coordinately protect the circadian clock and normal metabolic function. Genes and Development, 2012, 26, 657-667.	2.7	427
82	De-Meaning of Metabolism. Science, 2012, 336, 1651-1652.	6.0	29
83	Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. Journal of Clinical Investigation, 2012, 122, 2428-2438.	3.9	211
84	A Circadian Rhythm Orchestrated by Histone Deacetylase 3 Controls Hepatic Lipid Metabolism. Science, 2011, 331, 1315-1319.	6.0	596
85	Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes and Development, 2011, 25, 2480-2488.	2.7	254
86	Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor Î ³ Function in Adipocytes and Macrophages. Molecular and Cellular Biology, 2010, 30, 2078-2089.	1.1	189
87	Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbα. Genes and Development, 2009, 23, 2201-2209.	2.7	101
88	Bifunctional Role of Rev-erbα in Adipocyte Differentiation. Molecular and Cellular Biology, 2008, 28, 2213-2220.	1.1	110
89	Sweet Dreams for LXR. Cell Metabolism, 2007, 5, 159-161.	7.2	26
90	Rev-erbα, a Heme Sensor That Coordinates Metabolic and Circadian Pathways. Science, 2007, 318, 1786-1789.	6.0	643

#	Article	IF	CITATIONS
91	The Orphan Nuclear Receptor Rev-erbα Recruits the N-CoR/Histone Deacetylase 3 Corepressor to Regulate the Circadian Bmal1 Gene. Molecular Endocrinology, 2005, 19, 1452-1459.	3.7	239
92	How Obesity Causes Diabetes: Not a Tall Tale. Science, 2005, 307, 373-375.	6.0	491
93	The Many Faces of PPARÎ ³ . Cell, 2005, 123, 993-999.	13.5	1,291
94	PPARÎ ³ , 10Âyears later. Biochimie, 2005, 87, 9-13.	1.3	133
95	Regulation of Fasted Blood Glucose by Resistin. Science, 2004, 303, 1195-1198.	6.0	640
96	East meets West: an herbal tea finds a receptor. Journal of Clinical Investigation, 2004, 113, 23-25.	3.9	32
97	Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. Journal of Clinical Investigation, 2004, 114, 1281-1289.	3.9	508
98	Reply to "A "futile cycle―induced by thiazolidinediones in human adipose tissue?― Nature Medicine, 2003, 9, 812-812.	15.2	1
99	The N-CoR/Histone Deacetylase 3 Complex Is Required for Repression by Thyroid Hormone Receptor. Molecular and Cellular Biology, 2003, 23, 5122-5131.	1.1	184
100	Nuclear receptor corepressors. Nuclear Receptor Signaling, 2003, 1, nrs.01001.	1.0	74
101	Thyroid hormone action: a binding contract. Journal of Clinical Investigation, 2003, 112, 497-499.	3.9	115
102	Becoming fat. Genes and Development, 2002, 16, 1-5.	2.7	51
103	Progress in cardiovascular biology: PPAR for the course. Nature Medicine, 2001, 7, 23-24.	15.2	67
104	The hormone resistin links obesity to diabetes. Nature, 2001, 409, 307-312.	13.7	4,167
105	The SMRT and N-CoR Corepressors Are Activating Cofactors for Histone Deacetylase 3. Molecular and Cellular Biology, 2001, 21, 6091-6101.	1.1	532
106	The great repression. Journal of Cell Science, 2001, 114, 3793-3794.	1.2	0
107	One man's food. Nature, 2000, 407, 852-853.	13.7	7
108	TRANSCRIPTIONALCONTROL OFADIPOGENESIS. Annual Review of Nutrition, 2000, 20, 535-559.	4.3	292

#	Article	IF	CITATIONS
109	The Mechanism of Action of Thyroid Hormones. Annual Review of Physiology, 2000, 62, 439-466.	5.6	605
110	PPARy in Adipocyte Differentiation. Journal of Animal Science, 1999, 77, 16.	0.2	8
111	The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature, 1999, 402, 93-96.	13.7	584
112	Transcriptional Activation and Repression by RORα, an Orphan Nuclear Receptor Required for Cerebellar Development. Molecular Endocrinology, 1997, 11, 1737-1746.	3.7	80
113	Peroxisome Proliferator-Activated Receptor γ1 Expression Is Induced during Cyclic Adenosine Monophosphate-Stimulated Differentiation of Alveolar Type II Pneumonocytes*. Endocrinology, 1997, 138, 3695-3703.	1.4	54
114	Peroxisome Proliferator-Activated Receptor γ1 Expression Is Induced during Cyclic Adenosine Monophosphate-Stimulated Differentiation of Alveolar Type II Pneumonocytes. , 0, .		28