Laura Treccani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/175020/publications.pdf Version: 2024-02-01

Ι ΑΠΡΑ ΤΡΕΟΟΛΝΙ

#	Article	IF	CITATIONS
1	Mineralization of iron oxide by ferritin homopolymers immobilized on SiO ₂ nanoparticles. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 16-27.	0.7	1
2	Anchoring of Iron Oxyhydroxide Clusters at H and L Ferritin Subunits. ACS Biomaterials Science and Engineering, 2018, 4, 483-490.	2.6	5
3	New Sustainable Hybrid Porous Materials for Air Particulate Matter Trapping. Materials Science Forum, 2018, 941, 2237-2242.	0.3	3
4	A New Porous Hybrid Material Derived From Silica Fume and Alginate for Sustainable Pollutants Reduction. Frontiers in Chemistry, 2018, 6, 60.	1.8	34
5	Antibacterial active open-porous hydroxyapatite/lysozyme scaffolds suitable as bone graft and depot for localised drug delivery. Journal of Biomaterials Applications, 2017, 31, 1123-1134.	1.2	15
6	Co-delivery of cisplatin and doxorubicin from calcium phosphate beads/matrix scaffolds for osteosarcoma therapy. Materials Science and Engineering C, 2017, 77, 427-435.	3.8	42
7	Physisorption of α-chymotrypsin on SiO2 and TiO2: A comparative study via experiments and molecular dynamics simulations. Biointerphases, 2016, 11, 011007.	0.6	12
8	Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase. Materials Science and Engineering C, 2016, 69, 184-194.	3.8	18
9	Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Materials Science and Engineering C, 2016, 67, 542-553.	3.8	18
10	A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	19
11	Aluminium acetate as alternative cross-linker for temperature controlled gel-casting and joining of ceramics. Journal of the European Ceramic Society, 2016, 36, 1241-1251.	2.8	4
12	Gel casting of large area micro- and sub-micropatterned thin ceramic tapes. Ceramics International, 2016, 42, 5036-5044.	2.3	9
13	Assessment of the Proteolytic Activity of α-Chymotrypsin Immobilized on Colloidal Particles by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Analytical Letters, 2015, 48, 424-441.	1.0	6
14	Synthesis and mechanical evaluation of Sr-doped calcium-zirconium-silicate (baghdadite) and its impact on osteoblast cell proliferation and ALP activity. Biomedical Materials (Bristol), 2015, 10, 055013.	1.7	27
15	Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum. ACS Applied Materials & Interfaces, 2015, 7, 26880-26891.	4.0	69
16	Amino acid-catalyzed seed regrowth synthesis of photostable high fluorescent silica nanoparticles with tunable sizes for intracellular studies. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	16
17	A mild one-pot process for synthesising hydroxyapatite/biomolecule bone scaffolds for sustained and controlled antibiotic release. Biomedical Materials (Bristol), 2015, 10, 015013.	1.7	9
18	Magnesium-containing mixed coatings on zirconia for dental implants: mechanical characterization and inÂvitro behavior. Journal of Biomaterials Applications, 2015, 30, 104-118.	1.2	22

LAURA TRECCANI

#	Article	IF	CITATIONS
19	Modulation of Silica Nanoparticle Uptake into Human Osteoblast Cells by Variation of the Ratio of Amino and Sulfonate Surface Groups: Effects of Serum. ACS Applied Materials & Interfaces, 2015, 7, 13821-13833.	4.0	60
20	Physisorption of enzymatically active chymotrypsin on titania colloidal particles. Journal of Colloid and Interface Science, 2015, 455, 236-244.	5.0	13
21	Effect of silica on porosity, strength, and toughness of pressureless sintered calcium phosphate–zirconia bioceramics. Biomedical Materials (Bristol), 2015, 10, 045020.	1.7	5
22	Utilizing the protein corona around silica nanoparticles for dual drug loading and release. Nanoscale, 2015, 7, 16251-16265.	2.8	27
23	Dual fluorophore doped silica nanoparticles for cellular localization studies in multiple stained cells. Acta Biomaterialia, 2015, 14, 208-216.	4.1	14
24	Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential. Materials Science and Engineering C, 2015, 48, 337-346.	3.8	54
25	Enzyme-assisted calcium phosphate biomineralization on an inert alumina surface. Acta Biomaterialia, 2015, 13, 335-343.	4.1	20
26	Characterization of Wet Powder-Sprayed Zirconia/Calcium Phosphate Coating for Dental Implants. Clinical Implant Dentistry and Related Research, 2015, 17, 186-198.	1.6	28
27	Selective covalent immobilization of ferritin on alumina. Biointerphases, 2014, 9, 031018.	0.6	9
28	Novel akermanite-based bioceramics from preceramic polymers and oxide fillers. Ceramics International, 2014, 40, 1029-1035.	2.3	34
29	Mechanical evaluation of calcium-zirconium-silicate (baghdadite) obtained by a direct solid-state synthesis route. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 294-301.	1.5	66
30	Gel Casting of Freeâ€Shapeable Ceramic Membranes with Adjustable Pore Size for Ultra―and Microfiltration. Journal of the American Ceramic Society, 2014, 97, 1393-1401.	1.9	21
31	The role of ligands on protein retention in adsorption chromatography: A surface energetics approach. Journal of Separation Science, 2014, 37, 618-624.	1.3	10
32	Rapid Sintering of Porous Monoliths Assembled from Microbeads with High Specific Surface Area and Multimodal Porosity. Advanced Engineering Materials, 2014, 16, 151-155.	1.6	5
33	Physicochemical properties and biodegradability of organically functionalized colloidal silica particles in aqueous environment. Chemosphere, 2014, 99, 96-101.	4.2	7
34	A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment. Materials Science and Engineering C, 2014, 42, 137-145.	3.8	16
35	The role of surface functionalization of colloidal alumina particles on their controlled interactions with viruses. Biomaterials, 2013, 34, 4203-4213.	5.7	28
36	Osteoblast viability on hydroxyapatite with well-adjusted submicron and micron surface roughness as monitored by the proliferation reagent WST-1. Journal of Biomaterials Applications, 2013, 27, 791-800.	1.2	23

LAURA TRECCANI

#	Article	IF	CITATIONS
37	Controlling Mixed-Protein Adsorption Layers on Colloidal Alumina Particles by Tailoring Carboxyl and Hydroxyl Surface Group Densities. Langmuir, 2013, 29, 12502-12510.	1.6	34
38	Effective Bacterial Inactivation and Removal of Copper by Porous Ceramics with High Surface Area. Environmental Science & Technology, 2013, 47, 1065-1072.	4.6	32
39	Controlling protein–particle adsorption by surface tailoring colloidal alumina particles with sulfonate groups. Acta Biomaterialia, 2013, 9, 5780-5787.	4.1	31
40	A critical study: Assessment of the effect of silica particles from 15 to 500Ânm on bacterial viability. Environmental Pollution, 2013, 176, 292-299.	3.7	24
41	Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: Bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives. Journal of Colloid and Interface Science, 2013, 407, 529-535.	5.0	10
42	Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomaterialia, 2013, 9, 7115-7150.	4.1	226
43	Adsorption and Orientation of the Physiological Extracellular Peptide Glutathione Disulfide on Surface Functionalized Colloidal Alumina Particles. Journal of the American Chemical Society, 2013, 135, 6307-6316.	6.6	29
44	Porous ceramic monoliths assembled from microbeads with high specific surface area for effective biocatalysis. RSC Advances, 2013, 3, 13381.	1.7	10
45	Micromolding of Calcium Carbonate Using a Bioâ€Inspired, Coacervationâ€Mediated Process. Journal of the American Ceramic Society, 2013, 96, 736-742.	1.9	15
46	Ceramic Microbeads as Adsorbents for Purification Technologies with High Specific Surface Area, Adjustable Pore Size, and Morphology Obtained by Ionotropic Gelation. Journal of the American Ceramic Society, 2012, 95, 907-914.	1.9	15
47	Interaction of the Physiological Tripeptide Glutathione with Colloidal Alumina Particles. Journal of Physical Chemistry C, 2012, 116, 23136-23142.	1.5	3
48	Highly Efficient Enzyme-Functionalized Porous Zirconia Microtubes for Bacteria Filtration. Environmental Science & Technology, 2012, 46, 8739-8747.	4.6	63
49	Orientation of human osteoblasts on hydroxyapatite-based microchannels. Acta Biomaterialia, 2012, 8, 394-403.	4.1	51
50	Protein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups. Acta Biomaterialia, 2012, 8, 1221-1229.	4.1	104
51	Fluorescence labeling of colloidal core–shell particles with defined isoelectric points for in vitro studies. Acta Biomaterialia, 2012, 8, 720-727.	4.1	17
52	Porous wollastonite–hydroxyapatite bioceramics from a preceramic polymer and micro- or nano-sized fillers. Journal of the European Ceramic Society, 2012, 32, 399-408.	2.8	33
53	Micromachining of ceramic surfaces: Hydroxyapatite and zirconia. Journal of Materials Processing Technology, 2012, 212, 614-624.	3.1	36
54	Adsorption and Reduction of Glutathione Disulfide on α-Al2O3Nanoparticles: Experiments and Modeling. Langmuir, 2011, 27, 9449-9457.	1.6	18

LAURA TRECCANI

#	Article	IF	CITATIONS
55	Comparison of micropatterning methods for ceramic surfaces. Journal of the European Ceramic Society, 2011, 31, 2809-2817.	2.8	28
56	Development and characterisation of functionalised ceramic microtubes for bacteria filtration. Journal of Membrane Science, 2010, 365, 447-455.	4.1	60
57	Versatile Crackâ€Free Ceramic Micropatterns Made by a Modified Molding Technique. Journal of the American Ceramic Society, 2010, 93, 2574-2578.	1.9	16
58	Antibacterial and Abrasionâ€Resistant Alumina Micropatterns. Advanced Engineering Materials, 2009, 11, B61.	1.6	19
59	Perlinhibin, a Cysteine-, Histidine-, and Arginine-Rich Miniprotein from Abalone (Haliotis laevigata) Nacre, Inhibits In Vitro Calcium Carbonate Crystallization. Biophysical Journal, 2007, 93, 1246-1254.	0.2	69
60	Perlwapin, an Abalone Nacre Protein with Three Four-Disulfide Core (Whey Acidic Protein) Domains, Inhibits the Growth of Calcium Carbonate Crystals. Biophysical Journal, 2006, 91, 2601-2608.	0.2	110
61	Abalone nacre insoluble matrix induces growth of flat and oriented aragonite crystals. Biochemical and Biophysical Research Communications, 2006, 344, 45-49.	1.0	29
62	The nacre protein perlucin nucleates growth of calcium carbonate crystals. Journal of Microscopy, 2003, 212, 280-291.	0.8	158