Jian Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1749813/publications.pdf

Version: 2024-02-01

430874 526287 1,513 27 18 27 citations h-index g-index papers 27 27 27 1115 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Climate influence on zinc isotope variations in a loess–paleosol sequence of the Chinese Loess Plateau. Geochimica Et Cosmochimica Acta, 2022, 321, 115-132.	3.9	5
2	Zn-, Mg- and O-isotope evidence for the origin of mantle eclogites from Roberts Victor kimberlite (Kaapvaal Craton, South Africa). Geology, 2022, 50, 593-597.	4.4	4
3	Carbonated Big Mantle Wedge Extending to the NE Edge of the Stagnant Pacific Slab: Constraints from Late Mesozoic-Cenozoic Basalts from Far Eastern Russia. Journal of Earth Science (Wuhan, China), 2022, 33, 121-132.	3.2	7
4	Iron isotopic fractionation during eclogite anatexis and adakitic melt evolution: insights into garnet effect on Fe isotopic variations in high-silica igneous rocks. Contributions To Mineralogy and Petrology, 2022, 177, 1.	3.1	3
5	Zinc isotope constraints on carbonated mantle sources for rejuvenated-stage lavas from Kauaʻi, Hawaiʻi. Chemical Geology, 2022, 605, 120967.	3.3	9
6	Iron and magnesium isotopic compositions of subduction-zone fluids and implications for arc volcanism. Geochimica Et Cosmochimica Acta, 2020, 278, 376-391.	3.9	46
7	Magnesium and zinc isotope evidence for recycled sediments and oceanic crust in the mantle sources of continental basalts from eastern China. Lithos, 2020, 370-371, 105627.	1.4	12
8	Mantle Zn Isotopic Heterogeneity Caused by Meltâ€Rock Reaction: Evidence From Feâ€Rich Peridotites and Pyroxenites From the Bohemian Massif, Central Europe. Journal of Geophysical Research: Solid Earth, 2019, 124, 3588-3604.	3.4	18
9	A nephelinitic component with unusual l´56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle. Earth and Planetary Science Letters, 2019, 512, 175-183.	4.4	47
10	Effects of Melt Percolation on Zn Isotope Heterogeneity in the Mantle: Constraints From Peridotite Massifs in Ivreaâ€Verbano Zone, Italian Alps. Journal of Geophysical Research: Solid Earth, 2018, 123, 2706-2722.	3.4	29
11	Silicon isotopic compositions of altered oceanic crust: Implications for Si isotope heterogeneity in the mantle. Chemical Geology, 2018, 479, 1-9.	3.3	21
12	Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting. Geochimica Et Cosmochimica Acta, 2018, 238, 85-101.	3.9	68
13	Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps. Geochimica Et Cosmochimica Acta, 2017, 211, 48-63.	3.9	36
14	Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 2017, 4, 111-120.	9.5	240
15	Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle. Geochimica Et Cosmochimica Acta, 2017, 198, 151-167.	3.9	135
16	Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth and Planetary Science Letters, 2016, 444, 169-178.	4.4	140
17	Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific. Journal of Geophysical Research: Solid Earth, 2016, 121, 7086-7100.	3.4	56
18	Copper isotope behavior during extreme magma differentiation and degassing: a case study on Laacher See phonolite tephra (East Eifel, Germany). Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	30

#	Article	IF	CITATION
19	Empirical calibration of the clinopyroxene–garnet magnesium isotope geothermometer and implications. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	19
20	Mg-Sr isotopes of low-Î' ²⁶ Mg basalts tracing recycled carbonate species: Implication for the initial melting depth of the carbonated mantle in Eastern China. International Geology Review, 2016, 58, 1350-1362.	2.1	53
21	Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks from the Dabie UHP Orogen, China: insights into supercritical liquids in continental subduction zones. International Geology Review, 2015, 57, 1103-1129.	2.1	14
22	Magnesium isotopic compositions of altered oceanic basalts and gabbros from IODP site 1256 at the East Pacific Rise. Lithos, 2015, 231, 53-61.	1.4	52
23	Copper isotopic composition of the silicate Earth. Earth and Planetary Science Letters, 2015, 427, 95-103.	4.4	127
24	Origin of low \hat{l} 26 Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochimica Et Cosmochimica Acta, 2015, 164, 298-317.	3.9	142
25	High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth and Planetary Science Letters, 2011, 304, 224-230.	4.4	95
26	Which preventive measures might protect health care workers from SARS?. BMC Public Health, 2009, 9, 81.	2.9	89
27	Anti–SARS-CoV Immunoglobulin G in Healthcare Workers, Guangzhou, China. Emerging Infectious Diseases, 2005, 11, 89-94.	4.3	16