List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1749812/publications.pdf Version: 2024-02-01

014	00 710	9756	11288
214	20,713	/3	136
papers	citations	h-index	g-index
222	222	222	01410
220	220	220	21419
all docs	docs citations	times ranked	citing authors

DANIELA MONTI

#	Article	IF	CITATIONS
1	Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of Ageing and Development, 2007, 128, 92-105.	2.2	1,759
2	Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS ONE, 2010, 5, e10667.	1.1	1,107
3	Gut Microbiota and Extreme Longevity. Current Biology, 2016, 26, 1480-1485.	1.8	668
4	Increased cytokine production in mononuclear cells of healthy elderly people. European Journal of Immunology, 1993, 23, 2375-2378.	1.6	602
5	The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Frontiers in Medicine, 2018, 5, 61.	1.2	589
6	The immunology of exceptional individuals: the lesson of centenarians. Trends in Immunology, 1995, 16, 12-16.	7.5	521
7	Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Letters, 2005, 579, 2035-2039.	1.3	403
8	The immune system in extreme longevity. Experimental Gerontology, 2008, 43, 61-65.	1.2	373
9	Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB Journal, 1999, 13, 1532-1536.	0.2	358
10	Inflammation markers predicting frailty and mortality in the elderly. Experimental and Molecular Pathology, 2006, 80, 219-227.	0.9	306
11	Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for "inflammâ€aging― European Journal of Immunology, 2014, 44, 1552-1562.	1.6	305
12	The network and the remodeling theories of aging: historical background and new perspectives. Experimental Gerontology, 2000, 35, 879-896.	1.2	296
13	A gender-dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. European Journal of Immunology, 2001, 31, 2357-2361.	1.6	285
14	Inflamm-ageing. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 14-20.	1.3	281
15	Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging, 2015, 7, 1159-1170.	1.4	276
16	Protective Effect of N-Acetylcysteine in Tumor Necrosis Factor-α-Induced Apoptosis in U937 Cells: The Role of Mitochondria. Experimental Cell Research, 1995, 220, 232-240.	1.2	273
17	Plasma antioxidants and longevity: a study on healthy centenarians. Free Radical Biology and Medicine, 2000, 28, 1243-1248.	1.3	256
18	Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radical Biology and Medicine, 2018, 115, 80-91.	1.3	255

#	Article	IF	CITATIONS
19	CD45 isoforms expression on CD4+ and CD8+ T cells throughout life, from newborns to centenarians: implications for T cell memory. Mechanisms of Ageing and Development, 1996, 86, 173-195.	2.2	239
20	Thyroid and other organ-specific autoantibodies in healthy ceritenarians. Lancet, The, 1992, 339, 1506-1508.	6.3	225
21	Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mechanisms of Ageing and Development, 2012, 133, 675-685.	2.2	218
22	Inflamm-Aging, Cytokines and Aging: State of the Art, New Hypotheses on the Role of Mitochondria and New Perspectives from Systems Biology. Current Pharmaceutical Design, 2006, 12, 3161-3171.	0.9	211
23	Metabolic Signatures of Extreme Longevity in Northern Italian Centenarians Reveal a Complex Remodeling of Lipids, Amino Acids, and Gut Microbiota Metabolism. PLoS ONE, 2013, 8, e56564.	1.1	205
24	An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nature Aging, 2021, 1, 598-615.	5.3	202
25	Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians. Mechanisms of Ageing and Development, 2005, 126, 351-361.	2.2	193
26	Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Frontiers in Immunology, 2017, 8, 982.	2.2	190
27	Mitochondrial Modifications during Rat Thymocyte Apoptosis: A Study at the Single Cell Level. Experimental Cell Research, 1994, 214, 323-330.	1.2	187
28	Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clinical Science, 2016, 130, 1711-1725.	1.8	182
29	Immunosenescence and inflammaging in the aging process: age-related diseases or longevity?. Ageing Research Reviews, 2021, 71, 101422.	5.0	178
30	Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians' offspring. Age, 2013, 35, 1961-1973.	3.0	174
31	Complex alteration of thyroid function in healthy centenarians Journal of Clinical Endocrinology and Metabolism, 1993, 77, 1130-1134.	1.8	172
32	Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factors. FASEB Journal, 1998, 12, 433-437.	0.2	165
33	Immunosenescence and Immunogenetics of Human Longevity. NeuroImmunoModulation, 2008, 15, 224-240.	0.9	165
34	Massive Load of Functional Effector CD4+ and CD8+ T Cells against Cytomegalovirus in Very Old Subjects. Journal of Immunology, 2007, 179, 4283-4291.	0.4	156
35	Inflammaging and human longevity in the omics era. Mechanisms of Ageing and Development, 2017, 165, 129-138.	2.2	148
36	Changes in circulating B cells and immunoglobulin classes and subclasses in a healthy aged population. Clinical and Experimental Immunology, 2008, 90, 351-354.	1.1	146

#	Article	IF	CITATIONS
37	Apoptosis, DNA damage and ubiquitin expression in normal andmdxmuscle fibers after exercise. FEBS Letters, 1995, 373, 291-295.	1.3	144
38	lmmune system, cell senescence, aging and longevityinflamm-aging reappraised. Current Pharmaceutical Design, 2013, 19, 1675-9.	0.9	144
39	Chemokines, sTNF-Rs and sCD30 serum levels in healthy aged people and centenarians. Mechanisms of Ageing and Development, 2001, 121, 37-46.	2.2	139
40	Do men and women follow different trajectories to reach extreme longevity?. Aging Clinical and Experimental Research, 2000, 12, 77-84.	1.4	138
41	Extremely low frequency pulsed electromagnetic fields increase cell proliferation in lymphocytes from young and aged subjects. Biochemical and Biophysical Research Communications, 1989, 160, 692-698.	1.0	132
42	Human Aging and Longevity Are Characterized by High Levels of Mitokines. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 600-607.	1.7	130
43	Cytometric analysis of immunosenescence. , 1997, 27, 297-313.		129
44	Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity. PLoS Genetics, 2015, 11, e1005728.	1.5	128
45	Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging, 2014, 6, 9-25.	1.4	126
46	The Genetics of Human Longevity. Annals of the New York Academy of Sciences, 2006, 1067, 252-263.	1.8	124
47	Complex alteration of thyroid function in healthy centenarians. Journal of Clinical Endocrinology and Metabolism, 1993, 77, 1130-1134.	1.8	124
48	Age-dependent modifications of Type 1 and Type 2 cytokines within virgin and memory CD4+ T cells in humans. Mechanisms of Ageing and Development, 2006, 127, 560-566.	2.2	112
49	Extremely low frequency pulsed electromagnetic fields increase interleukin-2 (IL-2) utilization and IL-2 receptor expression in mitogen-stimulated human lymphocytes from old subjects. FEBS Letters, 1989, 248, 141-144.	1.3	110
50	Vitamin E–gene interactions in aging and inflammatory age-related diseases: Implications for treatment. A systematic review. Ageing Research Reviews, 2014, 14, 81-101.	5.0	110
51	C60 Carboxyfullerene Exerts a Protective Activity against Oxidative Stress-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells. Biochemical and Biophysical Research Communications, 2000, 277, 711-717.	1.0	103
52	Immune System, Cell Senescence, Aging and Longevity - Inflamm-Aging Reappraised. Current Pharmaceutical Design, 2013, 19, 1675-1679.	0.9	101
53	Telomere Length in Fibroblasts and Blood Cells from Healthy Centenarians. Experimental Cell Research, 1999, 248, 234-242.	1.2	100
54	Long-term immune-endocrine effects of bereavement: relationships with anxiety levels and mood. Psychiatry Research, 2003, 121, 145-158.	1.7	98

#	Article	IF	CITATIONS
55	Inhibition of apoptosis by zinc: A reappraisal. Biochemical and Biophysical Research Communications, 1992, 187, 1256-1261.	1.0	97
56	The Genetic Variability of APOE in Different Human Populations and Its Implications for Longevity. Genes, 2019, 10, 222.	1.0	96
57	Mitochondria, aging and longevity - a new perspective. FEBS Letters, 2001, 492, 9-13.	1.3	92
58	In vivo accumulation of sulfated glycoprotein 2 mRNA in rat thymocytes upon dexamethasone-induced cell death. Biochemical and Biophysical Research Communications, 1991, 175, 810-815.	1.0	91
59	Long-term immunologic effects of thymectomy in patients with myasthenia gravis. Journal of Allergy and Clinical Immunology, 1999, 103, 865-872.	1.5	91
60	Shotgun Metagenomics of Gut Microbiota in Humans with up to Extreme Longevity and the Increasing Role of Xenobiotic Degradation. MSystems, 2020, 5, .	1.7	91
61	Zinc status, psychological and nutritional assessment in old people recruited in five European countries: Zincage study. Biogerontology, 2006, 7, 339-345.	2.0	88
62	C ₃ â€Fulleroâ€ <i>tris</i> â€Methanodicarboxylic Acid Protects Cerebellar Granule Cells from Apoptosis. Journal of Neurochemistry, 2000, 74, 1197-1204.	2.1	87
63	Exposure to Low Frequency Pulsed Electromagnetic Fields Increases Interleukin-1 and Interleukin-6 Production by Human Peripheral Blood Mononuclear Cells. Experimental Cell Research, 1993, 204, 385-387.	1.2	84
64	The different apoptotic potential of the p53 codon 72 alleles increases with age and modulates in vivo ischaemia-induced cell death. Cell Death and Differentiation, 2004, 11, 962-973.	5.0	84
65	Apoptosis—programmed cell death: a role in the aging process?. American Journal of Clinical Nutrition, 1992, 55, 1208S-1214S.	2.2	82
66	Immune System, Cell Senescence, Aging and Longevity - Inflamm-Aging Reappraised. Current Pharmaceutical Design, 2013, 19, 1675-1679.	0.9	80
67	The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mechanisms of Ageing and Development, 2017, 165, 147-155.	2.2	79
68	Low circulating IGF-I bioactivity is associated with human longevity: Findings in centenarians' offspring. Aging, 2012, 4, 580-589.	1.4	78
69	Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects. Experimental Gerontology, 2008, 43, 445-451.	1.2	77
70	Presence of ACTH and β-endorphin immunoreactive molecules in the freshwater snail Planorbarius corneus (L.) (Gastropoda, Pulmonata) and their possible role in phagocytosis. Regulatory Peptides, 1990, 27, 1-9.	1.9	76
71	Cytotoxicity and immunocyte markers in cells from the freshwater snailPlanorbarius corneus (L.) (Gastropoda pulmonata): implications for the evolution of natural killer cells. European Journal of Immunology, 1991, 21, 489-493.	1.6	76
72	Polymorphisms in MT1a gene coding region are associated with longevity in Italian Central female population. Biogerontology, 2006, 7, 357-365.	2.0	76

#	Article	IF	CITATIONS
73	Systems Biology and Longevity: An Emerging Approach to Identify Innovative Anti- Aging Targets and Strategies. Current Pharmaceutical Design, 2010, 16, 802-813.	0.9	76
74	Intense Antiextracellular Adaptive Immune Response to Human Cytomegalovirus in Very Old Subjects with Impaired Health and Cognitive and Functional Status. Journal of Immunology, 2010, 184, 3242-3249.	0.4	76
75	Hormetic approaches to the treatment of Parkinson's disease: Perspectives and possibilities. Journal of Neuroscience Research, 2018, 96, 1641-1662.	1.3	75
76	Apoptosis by 2-chloro-2′-deoxy-adenosine and 2-chloro-adenosine in human peripheral blood mononuclear cells. Neurochemistry International, 1998, 32, 493-504.	1.9	74
77	The Highly Reducing Sugar 2-Deoxy-d-Ribose Induces Apoptosis in Human Fibroblasts by Reduced Glutathione Depletion and Cytoskeletal Disruption. Biochemical and Biophysical Research Communications, 1998, 243, 416-425.	1.0	74
78	Decreased susceptibility to oxidative stress-induced apoptosis of peripheral blood mononuclear cells from healthy elderly and centenarians. Mechanisms of Ageing and Development, 2001, 121, 239-250.	2.2	74
79	The Immune System in the Elderly: Activation-Induced and Damage-Induced Apoptosis. Immunologic Research, 2004, 30, 081-094.	1.3	73
80	Immunoproteasomes and immunosenescence. Ageing Research Reviews, 2003, 2, 419-432.	5.0	72
81	Genomic Instability and Aging Annals of the New York Academy of Sciences, 1992, 663, 4-16.	1.8	71
82	Immunosenescence in Humans: Deterioration or Remodelling?. International Reviews of Immunology, 1995, 12, 57-74.	1.5	70
83	Age-Related Modifications in Circulating IL-15 Levels in Humans. Mediators of Inflammation, 2005, 2005, 245-247.	1.4	69
84	Complexity of Anti-immunosenescence Strategies in Humans. Artificial Organs, 2006, 30, 730-742.	1.0	68
85	The frequency of Klotho KL-VS polymorphism in a large Italian population, from young subjects to centenarians, suggests the presence of specific time windows for its effect. Biogerontology, 2010, 11, 67-73.	2.0	68
86	Carboxyfullerenes Protect Human Keratinocytes from Ultraviolet-B-Induced Apoptosis. Journal of Investigative Dermatology, 2000, 115, 835-841.	0.3	67
87	What studies on human longevity tell us about the risk for cancer in the oldest old: data and hypotheses on the genetics and immunology of centenarians. Experimental Gerontology, 2002, 37, 1263-1271.	1.2	67
88	Genes, ageing and longevity in humans: Problems, advantages and perspectives. Free Radical Research, 2006, 40, 1303-1323.	1.5	66
89	Sendai Virus and Herpes Virus Type 1 Induce Apoptosis in Human Peripheral Blood Mononuclear Cells. Experimental Cell Research, 1995, 218, 63-70.	1.2	65
90	Mitochondrial DNA involvement in human longevity. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1388-1399.	0.5	64

#	Article	IF	CITATIONS
91	Aged-related increase of high sensitive Troponin T and its implication in acute myocardial infarction diagnosis of elderly patients. Mechanisms of Ageing and Development, 2012, 133, 300-305.	2.2	64
92	D-Ribose and Deoxy-D-Ribose Induce Apoptosis in Human Quiescent Peripheral Blood Mononuclear Cells. Biochemical and Biophysical Research Communications, 1994, 201, 1109-1116.	1.0	63
93	Zinc deficiency and IL-6 â^174G/C polymorphism in old people from different European countries: Effect of zinc supplementation. ZINCAGE study. Experimental Gerontology, 2008, 43, 433-444.	1.2	63
94	Studies of the relationship between cell proliferation and cell death. II. Early gene expression during concanavalin A-induced proliferation or dexamethasone-induced apoptosis of rat thymocytes. Biochemical and Biophysical Research Communications, 1992, 188, 1261-1266.	1.0	62
95	DNA multiallelic systems reveal gene/longevity associations not detected by diallelic systems. The APOB locus. Human Genetics, 1997, 99, 312-318.	1.8	61
96	Chronic antigenic load and apoptosis in immunosenescence. Trends in Immunology, 2005, 26, 79-84.	2.9	61
97	Spontaneous and mitomycin-C-induced micronuclei in human lymphocytes exposed to extremely low frequency pulsed magnetic fields. Biochemical and Biophysical Research Communications, 1991, 176, 194-200.	1.0	58
98	Micronutrient–gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mechanisms of Ageing and Development, 2014, 136-137, 29-49.	2.2	58
99	T lymphocyte proliferative capability to defined stimuli and costimulatory CD28 pathway is not impaired in healthy centenarians. Mechanisms of Ageing and Development, 1997, 96, 127-136.	2.2	57
100	Centenarians as super-controls to assess the biological relevance of genetic risk factors for common age-related diseases: A proof of principle on type 2 diabetes. Aging, 2013, 5, 373-385.	1.4	57
101	Plasma concentrations of interleukin-1-beta, interleukin-6 and tumor necrosis factor-alpha, and of their soluble receptors and receptor antagonist in anorexia nervosa. Psychiatry Research, 2001, 103, 107-114.	1.7	56
102	Human longevity within an evolutionary perspective: The peculiar paradigm of a post-reproductive genetics. Experimental Gerontology, 2008, 43, 53-60.	1.2	55
103	p53 Codon 72 Polymorphism and Longevity: Additional Data on Centenarians from Continental Italy and Sardinia. American Journal of Human Genetics, 1999, 65, 1782-1785.	2.6	53
104	p66shc is highly expressed in fibroblasts from centenarians. Mechanisms of Ageing and Development, 2005, 126, 839-844.	2.2	53
105	Increased Cytokine Production by Peripheral Blood Mononuclear Cells from Healthy Elderly People. Annals of the New York Academy of Sciences, 1992, 663, 490-493.	1.8	52
106	Oxidative DNA Damage Repair andparp 1andparp 2Expression in Epstein-Barr Virus-Immortalized B Lymphocyte Cells from Young Subjects, Old Subjects, and Centenarians. Rejuvenation Research, 2007, 10, 191-204.	0.9	52
107	Centenarians' offspring as a model of healthy aging: a reappraisal of the data on Italian subjects and a comprehensive overview. Aging, 2016, 8, 510-519.	1.4	52
108	Aging, Longevity, and Cancer: Studies in Down's Syndrome and Centenarians. Annals of the New York Academy of Sciences, 1991, 621, 428-440.	1.8	50

#	Article	IF	CITATIONS
109	Precocious aging of the immune system in Down syndrome: Alteration of b lymphocytes, T-lymphocyte subsets, and cells with natural killer markers. American Journal of Medical Genetics Part A, 2005, 37, 213-218.	2.4	50
110	p53 Codon 72 Alleles Influence the Response to Anticancer Drugs in Cells from Aged People by Regulating the Cell Cycle Inhibitor p21WAF1. Cell Cycle, 2005, 4, 1264-1271.	1.3	50
111	Remodelling of biological parameters during human ageing: evidence for complex regulation in longevity and in type 2 diabetes. Age, 2013, 35, 419-429.	3.0	48
112	Ageâ€dependent skewing of X chromosome inactivation appears delayed in centenarians' offspring. Is there a role for allelic imbalance in Healthy Aging and Longevity?. Aging Cell, 2012, 11, 277-283.	3.0	47
113	C3-Fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability. FEBS Letters, 1999, 454, 335-340.	1.3	45
114	A Meta-Analysis of Brain DNA Methylation Across Sex, Age, and Alzheimer's Disease Points for Accelerated Epigenetic Aging in Neurodegeneration. Frontiers in Aging Neuroscience, 2021, 13, 639428.	1.7	45
115	Neuroinflammation and the genetics of Alzheimer's disease: The search for a pro-inflammatory phenotype. Aging Clinical and Experimental Research, 2001, 13, 163-170.	1.4	44
116	The impact of mitochondrial DNA on human lifespan: A view from studies on centenarians. Biotechnology Journal, 2008, 3, 740-749.	1.8	43
117	ACTH-like molecules in gastropod molluscs: a possible role in ancestral immune response and stress. Proceedings of the Royal Society B: Biological Sciences, 1991, 245, 215-218.	1.2	42
118	p53 Variants Predisposing to Cancer Are Present in Healthy Centenarians. American Journal of Human Genetics, 1999, 64, 292-294.	2.6	42
119	Polymorphisms of Drug-Metabolizing Enzymes in Healthy Nonagenarians and Centenarians: Difference at GSTT1 Locus. Biochemical and Biophysical Research Communications, 2001, 280, 1389-1392.	1.0	41
120	Anti-beta 2 glycoprotein I antibodies in centenarians. Experimental Gerontology, 2004, 39, 1459-1465.	1.2	40
121	NaÃ ⁻ ve and memory CD8 T cell pool homeostasis in advanced aging: impact of age and of antigen-specific responses to cytomegalovirus. Age, 2014, 36, 625-640.	3.0	40
122	Zinc, Metallothioneins, and Longevity:. Annals of the New York Academy of Sciences, 2007, 1119, 129-146.	1.8	39
123	In vitro and in vivo effects of zinc on cytokine signalling in human T cells. Experimental Gerontology, 2008, 43, 472-482.	1.2	39
124	The "immune-mobile brain― Evolutionary evidence. Advances in Neuroimmunology, 1991, 1, 27-39.	1.8	38
125	Enhanced DNA repair in lymphocytes of Down syndrome patients: the influence of zinc nutritional supplementation. Mutation Research - DNAging, 1993, 295, 105-111.	3.3	38
126	p53 codon 72 genotype affects apoptosis by cytosine arabinoside in blood leukocytes. Biochemical and Biophysical Research Communications, 2002, 299, 539-541.	1.0	38

#	Article	IF	CITATIONS
127	Studies on the relationship between cell proliferation and cell death: Opposite patterns of SGP-2 and ornithine decarboxylase mRNA accumulation in pha-stimulated human lymphocytes. Biochemical and Biophysical Research Communications, 1991, 180, 59-63.	1.0	37
128	The Aging Thyroid: A Reappraisal Within the Geroscience Integrated Perspective. Endocrine Reviews, 2019, 40, 1250-1270.	8.9	37
129	Whole-genome sequencing analysis of semi-supercentenarians. ELife, 2021, 10, .	2.8	37
130	Apoptosis Remodeling in Immunosenescence: Implications for Strategies to Delay Ageing. Current Medicinal Chemistry, 2007, 14, 1389-1397.	1.2	36
131	Centenarians as extreme phenotypes: An ecological perspective to get insight into the relationship between the genetics of longevity and age-associated diseases. Mechanisms of Ageing and Development, 2017, 165, 195-201.	2.2	36
132	Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer's disease in comparison with healthy aging. GeroScience, 2021, 43, 985-1001.	2.1	36
133	3-Aminobenzamide Protects Cells from UV-B-Induced Apoptosis by Acting on Cytoskeleton and Substrate Adhesion. Biochemical and Biophysical Research Communications, 1995, 207, 715-724.	1.0	35
134	Mediterranean diet and plasma concentration of inflammatory markers in old and very old subjects in the ZINCAGE population study. Clinical Chemistry and Laboratory Medicine, 2008, 46, 990-6.	1.4	35
135	Identification of novel plasma glycosylation-associated markers of aging. Oncotarget, 2016, 7, 7455-7468.	0.8	35
136	Immune parameters identify Italian centenarians with a longer five-year survival independent of their health and functional status. Experimental Gerontology, 2014, 54, 14-20.	1.2	34
137	Cognitive status in the oldest old and centenarians: a condition crucial for quality of life methodologically difficult to assess. Mechanisms of Ageing and Development, 2017, 165, 185-194.	2.2	33
138	NK Cell Activity and T-Lymphocyte Proliferation in Healthy Centenarians. Annals of the New York Academy of Sciences, 1992, 663, 505-507.	1.8	32
139	Cell Death Protection by 3-Aminobenzamide and Other Poly(ADP-Ribose)polymerase Inhibitors: Different Effects on Human Natural Killer and Lymphokine-Activated Killer Cell Activities. Biochemical and Biophysical Research Communications, 1994, 199, 525-530.	1.0	32
140	Heterogeneity of Thyroid Function and Impact of Peripheral Thyroxine Deiodination in Centenarians and Semi-Supercentenarians: Association With Functional Status and Mortality. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 802-810.	1.7	32
141	Does the longevity of one or both parents influence the health status of their offspring?. Experimental Gerontology, 2013, 48, 395-400.	1.2	31
142	Senescence, Immortalization, and Apoptosis Annals of the New York Academy of Sciences, 1992, 673, 70-82.	1.8	30
143	Heat shock response by EBV-immortalized B-lymphocytes from centenarians and control subjects: a model to study the relevance of stress response in longevity. Experimental Gerontology, 2004, 39, 83-90.	1.2	30
144	Metabolic syndrome in the offspring of centenarians: focus on prevalence, components, and adipokines. Age, 2013, 35, 1995-2007.	3.0	30

#	Article	IF	CITATIONS
145	Centenarians as a 21st century healthy aging model: A legacy of humanity and the need for a world-wide consortium (WWC100+). Mechanisms of Ageing and Development, 2017, 165, 55-58.	2.2	30
146	Metallothionein Downregulation in Very Old Age: A Phenomenon Associated with Cellular Senescence?. Rejuvenation Research, 2008, 11, 455-459.	0.9	29
147	Cell Proliferation and Cell Death in Immunosenescence. Annals of the New York Academy of Sciences, 1992, 663, 250-261.	1.8	28
148	Assessment of gene–nutrient interactions on inflammatory status of the elderly with the use of a zinc diet score — ZINCAGE study. Journal of Nutritional Biochemistry, 2010, 21, 526-531.	1.9	28
149	Transmission from centenarians to their offspring of mtDNA heteroplasmy revealed by ultra-deep sequencing. Aging, 2014, 6, 454-467.	1.4	28
150	Age-related increase of mitomycin C-induced micronuclei in lymphocytes from Down's syndrome subjects. Mutation Research - DNAging, 1990, 237, 247-252.	3.3	27
151	A cytofluorimetric study of T lymphocyte subsets in rat lymphoid tissues (thymus, lymph nodes) and peripheral blood: a continuous remodelling during the first year of life. Experimental Gerontology, 2000, 35, 613-625.	1.2	26
152	Apoptosis-resistant phenotype in HL-60-derived cells HCW-2 is related to changes in expression of stress-induced proteins that impact on redox status and mitochondrial metabolism. Cell Death and Differentiation, 2003, 10, 163-174.	5.0	26
153	Genomic history of the Italian population recapitulates key evolutionary dynamics of both Continental and Southern Europeans. BMC Biology, 2020, 18, 51.	1.7	26
154	Effect of zinc ions on apoptosis in PBMCs from healthy aged subjects. Biogerontology, 2006, 7, 437-447.	2.0	25
155	The Three Genetics (Nuclear DNA, Mitochondrial DNA, and Gut Microbiome) of Longevity in Humans Considered as Metaorganisms. BioMed Research International, 2014, 2014, 1-14.	0.9	25
156	Recovery of Human Lymphocytes Damaged with Î ³ -Radiation or Enzymatically Produced Oxygen Radicals: Different Effects of Poly(ADP-ribosyl)polymerase Inhibitors. International Journal of Radiation Biology, 1990, 58, 279-291.	1.0	24
157	Resistance to apoptosis in Fanconi's anaemia. FEBS Letters, 1997, 409, 365-369.	1.3	23
158	Oxadiazon affects the expression and activity of aldehyde dehydrogenase and acylphosphatase in human striatal precursor cells: A possible role in neurotoxicity. Toxicology, 2019, 411, 110-121.	2.0	23
159	Cytoskeleton alterations of erythrocytes from patients with Fanconi's anemia. FEBS Letters, 2000, 468, 125-128.	1.3	22
160	Age-dependent changes in the susceptibility to apoptosis of peripheral blood CD4+ and CD8+ T lymphocytes with virgin or memory phenotype. Mechanisms of Ageing and Development, 2003, 124, 409-418.	2.2	22
161	Age-related differences in the metabolism of sulphite to sulphate and in the identification of sulphur trioxide radical in human polymorphonuclear leukocytes. Mechanisms of Ageing and Development, 1996, 88, 95-109.	2.2	19
162	Exposure to 100 Hz pulsed magnetic fields increases micronucleus frequency and cell proliferation in human lymphocytes. Bioelectrochemistry, 1997, 43, 77-81.	1.0	19

#	Article	IF	CITATIONS
163	Influence of f-MLP, ACTH(1–24) and CRH on in vitro Chemotaxis of Monocytes from Centenarians. NeuroImmunoModulation, 2008, 15, 285-289.	0.9	18
164	Thyroid hormones and frailty in persons experiencing extreme longevity. Experimental Gerontology, 2020, 138, 111000.	1.2	17
165	Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. Biogerontology, 2015, 16, 353-364.	2.0	16
166	Impact of demography and population dynamics on the genetic architecture of human longevity. Aging, 2018, 10, 1947-1963.	1.4	16
167	HLA Antigens and Aging. Annals of the New York Academy of Sciences, 1992, 663, 499-500.	1.8	14
168	Involvement of CD45 in Dexamethasone- and Heat-Shock-Induced Apoptosis of Rat Thymocytes. Biochemical and Biophysical Research Communications, 1995, 214, 941-948.	1.0	14
169	SGP-2, Apoptosis, and Aging. Annals of the New York Academy of Sciences, 1992, 663, 471-474.	1.8	13
170	3-Aminobenzamide Induces Cytoskeleton Rearrangement in M14 Melanoma-Cells. Biochemical and Biophysical Research Communications, 1994, 202, 915-922.	1.0	12
171	A gender–dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. European Journal of Immunology, 2001, 31, 2357.	1.6	12
172	Doxorubicin-induced senescence in normal fibroblasts promotes in vitro tumour cell growth and invasiveness: The role of Quercetin in modulating these processes. Mechanisms of Ageing and Development, 2022, 206, 111689.	2.2	12
173	Inhibition of poly(ADP-ribosyl)ation does not prevent lymphocyte entry into the cell cycle. FEBS Letters, 1989, 253, 146-150.	1.3	11
174	Zinc in Elderly People: Effects of Zinc Supplementation on Psychological Dimensions in Dependence of IL-6 -174 Polymorphism: A Zincage Study. Rejuvenation Research, 2008, 11, 479-483.	0.9	11
175	Evaluation of Lymphocyte Response to the Induced Oxidative Stress in a Cohort of Ageing Subjects, including Semisupercentenarians and Their Offspring. Mediators of Inflammation, 2018, 2018, 1-14.	1.4	11
176	DNA repair in lymphocytes from humans and rats with chronic iron overload. Biochemical and Biophysical Research Communications, 1988, 154, 698-704.	1.0	10
177	LAK activity is inducible in blood mononuclear cells from human fetus. Immunology Letters, 1990, 24, 137-140.	1.1	10
178	Natural cytotoxicity in a freshwater pulmonate mollusc: an unorthodox comparative approach. Advances in Neuroimmunology, 1991, 1, 99-113.	1.8	9
179	Antiproliferative Activity of 3-Aminobenzamide in A431 Carcinoma Cells Is Associated with a Target Effect on Cytoskeleton. Biochemical and Biophysical Research Communications, 1996, 225, 826-832.	1.0	9
180	Zinc, Metallothioneins, Longevity: Effect of Zinc Supplementation on Antioxidant Response: A Zincage Study. Rejuvenation Research, 2008, 11, 419-423.	0.9	9

#	Article	IF	CITATIONS
181	Cell Death Protection by 3-Aminobenzamide: Impairment of Cytoskeleton Function in Human NK Cell-Mediated Killing. Biochemical and Biophysical Research Communications, 1994, 199, 1250-1255.	1.0	8
182	Age-Dependent Effects of in Vitro Radiofrequency Exposure (Mobile Phone) on CD95+ T Helper Human Lymphocytes. Annals of the New York Academy of Sciences, 2006, 1067, 493-499.	1.8	8
183	The smell of longevity: a combination of Volatile Organic Compounds (VOCs) can discriminate centenarians and their offspring from age-matched subjects and young controls. GeroScience, 2020, 42, 201-216.	2.1	8
184	No association between frailty index and epigenetic clocks in Italian semi-supercentenarians. Mechanisms of Ageing and Development, 2021, 197, 111514.	2.2	8
185	Effect of ADP-Ribosyl Transferase Inhibitors on the Survival of Human Lymphocytes after Exposure to Different DNA-Damaging Agents. Annals of the New York Academy of Sciences, 1988, 551, 446-447.	1.8	7
186	Centenariansin good health conditions. Archives of Gerontology and Geriatrics, 2002, 35, 209-217.	1.4	7
187	Autoantibodies to Poly(ADP-Ribose) Polymerase in Centenarians: A Reappraisal of Grabar's Hypothesis. Gerontology, 2009, 55, 427-429.	1.4	7
188	Are the vascular complications of diabetes mellitus preceded by an altered thromboxane/prostacyclin plasmatic ratio?. Medical Hypotheses, 1986, 19, 229-241.	0.8	6
189	DNA repair, sensitivity to gamma radiation and to heat shock in lymphocytes from acute, untreated multiple sclerosis patients. Journal of Neuroimmunology, 1989, 21, 23-29.	1.1	6
190	Assessment of sense of taste in Italian centenarians,. Archives of Gerontology and Geriatrics, 1998, 26, 177-183.	1.4	6
191	Editorial: Adipose Tissue: Which Role in Aging and Longevity?. Frontiers in Endocrinology, 2020, 11, 583.	1.5	6
192	Circulating perilipin 2 levels are associated with fat mass, inflammatory and metabolic markers and are higher in women than men. Aging, 2021, 13, 7931-7942.	1.4	6
193	Association of rs3027178 polymorphism in the circadian clock gene PER1 with susceptibility to Alzheimer's disease and longevity in an Italian population. GeroScience, 2022, 44, 881-896.	2.1	6
194	Effects of Pulsed Electromagnetic Fields on the Proliferation of Lymphocytes from Aids Patients, HIV-Seropositive Subjects, and Seronegative Drug Users. Journal of Bioelectricity, 1989, 8, 227-237.	0.7	5
195	Exposure to low-frequency pulsed electromagnetic fields increases mitogen- induced lymphocyte proliferation in Down's syndrome. Aging Clinical and Experimental Research, 1991, 3, 241-246.	1.4	5
196	Long-term effects of vaccination on attentional performance. Vaccine, 2004, 22, 3877-3881.	1.7	5
197	Nucleoside transport in activated macrophages. Biochemical and Biophysical Research Communications, 1989, 160, 354-361.	1.0	4
198	Reply from Franceschi et al Trends in Immunology, 1995, 16, 549-550.	7.5	4

#	Article	IF	CITATIONS
199	Twelve-Week Daily Consumption of ad hoc Fortified Milk with ω-3, D, and Group B Vitamins Has a Positive Impact on Inflammaging Parameters: A Randomized Cross-Over Trial. Nutrients, 2020, 12, 3580.	1.7	4
200	Immunosenescence. , 1996, , 131-149.		4
201	Inflammaging. , 2018, , 1-31.		4
202	An In Vitro Model for Studying Oxidative Damage and Protective Substances in Human Cells. ATLA Alternatives To Laboratory Animals, 1991, 19, 77-83.	0.7	4
203	Shotgun Metagenomics of Human Gut Microbiota Up to Extreme Longevity and the Increasing Role of Xenobiotics Degradation. SSRN Electronic Journal, 0, , .	0.4	4
204	Inflammaging. , 2019, , 1599-1629.		3
205	The New Antigenic Ecospace of the Globalized World and its Impact on the Immune System: The Battleground of Trade-off and Antagonistic Pleiotropy. , 2014, , 125-144.		2
206	Caloric restriction modulates aging rate and sensitivity to oxygen free radical damage in rats. Aging Clinical and Experimental Research, 1991, 3, 410-412.	1.4	1
207	DNA and cell death. Cytotechnology, 1991, 5, 74-77.	0.7	1
208	Sensitivity to Genotoxic Agents and Immunological Status in a Case of Werner's Syndrome. Annals of the New York Academy of Sciences, 1992, 663, 429-431.	1.8	1
209	(Bi)sulfite Metabolism in Human Granulocytes: Age-Dependent Formation of Free Radical Intermediates. Annals of the New York Academy of Sciences, 1992, 663, 460-462.	1.8	1
210	Apoptosis and immunosenescence. Aging Clinical and Experimental Research, 1995, 7, 461-463.	1.4	1
211	Aging and Longevity in Animal Models and Humans. , 2009, , 175-191.		1
212	Pathological Relevance of the Natural Immune System. NeuroImmune Biology, 2005, , 331-350.	0.2	0
213	Immunity, Inflammation and infections during aging. , 2006, , 15-29.		0
214	Mitochondria, Aging, and Disease. Oxidative Stress and Disease, 2003, , .	0.3	0