
Cédric Noël

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1749505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alloying nanoparticles by discharges in liquids: a quest for metastability. Plasma Physics and Controlled Fusion, 2022, 64, 014003.	0.9	2
2	Etching of iron and iron–chromium alloys using ICP-RIE chlorine plasma. Plasma Sources Science and Technology, 2021, 30, 095022.	1.3	1
3	Synthesis of nanomaterials by electrode erosion using discharges in liquids. Journal of Applied Physics, 2021, 130, .	1.1	8
4	Inspection of contamination in nitrogen plasmas by monitoring the temporal evolution of the UV bands of NO-Î ³ and of the fourth positive system of N2. Journal of Applied Physics, 2021, 130, 173304.	1.1	3
5	Study by Optical Spectroscopy of Bismuth Emission in a Nanosecond-Pulsed Discharge Created in Liquid Nitrogen. Molecules, 2021, 26, 7403.	1.7	2
6	Synergistic Effect of Plasma and Laser Processes in Liquid for Alloyed-Nanoparticle Synthesis. Physical Review Applied, 2020, 13, .	1.5	13
7	Evidence of alloy formation in CoNi nanoparticles synthesized by nanosecondâ€pulsed discharges in liquid nitrogen. Plasma Processes and Polymers, 2020, 17, 1900255.	1.6	14
8	Diagnosing the plasma formed during acoustic cavitation in [BEPip][NTf2] ionic liquid. Physical Chemistry Chemical Physics, 2019, 21, 1183-1189.	1.3	6
9	Synthesis of Ag and Cd nanoparticles by nanosecond-pulsed discharge in liquid nitrogen. Frontiers of Chemical Science and Engineering, 2019, 13, 360-368.	2.3	11
10	Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen. Particuology, 2018, 40, 152-159.	2.0	22
11	Synthesis of copper and zinc nanostructures by discharges in liquid nitrogen. Materials Chemistry and Physics, 2018, 207, 350-358.	2.0	12
12	Correlations between gaseous and liquid phase chemistries induced by cold atmospheric plasmas in a physiological buffer. Physical Chemistry Chemical Physics, 2018, 20, 9198-9210.	1.3	56
13	Analysis of Zn I emission lines observed during a spark discharge in liquid nitrogen for zinc nanosheet synthesis. Plasma Sources Science and Technology, 2018, 27, 074004.	1.3	9
14	Nano-objects synthesized from Cu, Ag and Cu28Ag72 electrodes by submerged discharges in liquid nitrogen. Materials Chemistry and Physics, 2018, 217, 371-378.	2.0	11
15	Delay in micro-discharges appearance during PEO of Al: Evidence of a mechanism of charge accumulation at the electrolyte/oxide interface. Applied Surface Science, 2017, 410, 29-41.	3.1	65
16	Synthesis of Cu@ZnO core–shell nanoparticles by spark discharges in liquid nitrogen. Nano Structures Nano Objects, 2017, 10, 22-29.	1.9	26
17	Tuning the afterglow plasma composition in Ar/N ₂ /O ₂ mixtures: characteristics of a flowing surface-wave microwave discharge system. Plasma Sources Science and Technology, 2016, 25, 055014.	1.3	15
18	Sub-micro a-C:H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition. Journal Physics D: Applied Physics, 2016, 49, 445306.	1.3	2

Cédric Noël

#	Article	IF	CITATIONS
19	Interaction of (3-Aminopropyl)triethoxysilane with Pulsed Ar–O2 Afterglow: Application to Nanoparticles Synthesis. Plasma Chemistry and Plasma Processing, 2016, 36, 1031-1050.	1.1	12
20	Characterization of the behaviour of the electric arc during VAR of a Ti alloy. IOP Conference Series: Materials Science and Engineering, 2016, 143, 012011.	0.3	3
21	Interaction of (3-Aminopropyl)triethoxysilane With Late Arï٤¿N ₂ Afterglow: Application to Nanoparticles Synthesis. Plasma Processes and Polymers, 2016, 13, 698-710.	1.6	6
22	Surface Charge at the Oxide/Electrolyte Interface: Toward Optimization of Electrolyte Composition for Treatment of Aluminum and Magnesium by Plasma Electrolytic Oxidation. Langmuir, 2016, 32, 1405-1409.	1.6	42
23	Synthesis of nanocrystals by discharges in liquid nitrogen from Si–Sn sintered electrode. Scientific Reports, 2015, 5, 17477.	1.6	16
24	Influence of Plasma Chamber Setâ€Up on the Surface Modification of Nonâ€Vulcanized and Pure SBR Rubber Treated at Radioâ€Frequencies Air Plasma. Plasma Processes and Polymers, 2015, 12, 1139-1152.	1.6	5
25	Theoretical background of optical emission spectroscopy for analysis of atmospheric pressure plasmas. Plasma Sources Science and Technology, 2015, 24, 064003.	1.3	56
26	Optical investigation of the behavior of the electric arc and the metal transfer during vacuum remelting of a Ti alloy. Journal of Materials Processing Technology, 2014, 214, 2268-2275.	3.1	15
27	The evidence of cathodic micro-discharges during plasma electrolytic oxidation process. Applied Physics Letters, 2014, 104, .	1.5	21
28	Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis. Journal Physics D: Applied Physics, 2014, 47, 224016.	1.3	66
29	Synthesis of carbon fibres by electrical discharges in heptane. Materials Letters, 2014, 135, 115-118.	1.3	4
30	Comparison of Aluminium Nanostructures Created by Discharges in Various Dielectric Liquids. Plasma Chemistry and Plasma Processing, 2014, 34, 1101-1114.	1.1	29
31	Microwave capillary plasmas in helium at atmospheric pressure. Journal Physics D: Applied Physics, 2014, 47, 265201.	1.3	30
32	Combined SIMS and AFM study of complex structures of streamers on metallic multilayers. Surface and Interface Analysis, 2014, 46, 397-400.	0.8	4
33	Dynamics of bubbles created by plasma in heptane for micro-gap conditions. Journal of the Acoustical Society of America, 2013, 134, 991-1000.	0.5	17
34	Plasma-surface interaction in heptane. Journal of Applied Physics, 2013, 113, 213303.	1.1	16
35	Effects of Ar–H2–N2 microwave plasma on chitosan and its nanoliposomes blend thin films designed for tissue engineering applications. Carbohydrate Polymers, 2013, 93, 401-411.	5.1	15
36	Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Materials Chemistry and Physics, 2013, 142, 199-206.	2.0	26

CéDRIC NOëL

#	Article	IF	CITATIONS
37	Interaction of micro-discharges in heptane with metallic multi-layers. Applied Surface Science, 2013, 274, 378-391.	3.1	8
38	A study of helium atmospheric-pressure guided streamers for potential biological applications. Plasma Sources Science and Technology, 2013, 22, 025020.	1.3	43
39	Impacts created on various materials by micro-discharges in heptane: Influence of the dissipated charge. Journal of Applied Physics, 2013, 113, .	1.1	28
40	Interaction of Discharges in Heptane with Silicon Covered by a Carpet of Carbon Nanotubes. Advanced Engineering Materials, 2013, 15, 885-892.	1.6	4
41	Interaction Mechanisms between ArO ₂ Postâ€discharge and Biphenyl. Plasma Processes and Polymers, 2012, 9, 207-216.	1.6	17
42	Comparison between hexatriacontane and stearic acid behaviours under late Ar―O2 post-discharge. Surface and Coatings Technology, 2011, 205, S443-S446.	2.2	11
43	Interaction Mechanisms Between Ar–O2 Post-Discharge and Stearic Acid I: Behaviour of Thin Films. Plasma Chemistry and Plasma Processing, 2011, 31, 189-203.	1.1	28
44	Interaction Mechanisms Between Ar–O2 Post-Discharge and Stearic Acid II: Behaviour of Thick Films. Plasma Chemistry and Plasma Processing, 2011, 31, 205-215.	1.1	12
45	Interaction of Stearic Acid Deposited on Silicon Samples With Ar/N ₂ and Ar/O ₂ Atmospheric Pressure Microwave Postâ€discharges. Plasma Processes and Polymers, 2009, 6, S187.	1.6	9
46	Filamentation in argon microwave plasma at atmospheric pressure. Journal of Applied Physics, 2009, 105, .	1.1	25
47	Microwave plasmas at atmospheric pressure: theoretical insight and applications in surface treatment. EPJ Applied Physics, 2008, 42, 41-46.	0.3	6
48	Streamer-Surface Interaction in Heptane with Micro-Gaps. Advanced Materials Research, 0, 324, 89-92.	0.3	7