
Jianbing Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1749321/publications.pdf Version: 2024-02-01

IIANRING YAN

#	Article	IF	CITATIONS
1	Genome optimization via virtual simulation to accelerate maize hybrid breeding. Briefings in Bioinformatics, 2022, 23, .	3.2	3
2	Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. Plant Cell, 2022, 34, 557-578.	3.1	29
3	Genetic variation in <i>YIGE1</i> contributes to ear length and grain yield in maize. New Phytologist, 2022, 234, 513-526.	3.5	38
4	Enhancing crop diversity for food security in the face of climate uncertainty. Plant Journal, 2022, 109, 402-414.	2.8	60
5	gcaPDA: a haplotype-resolved diploid assembler. BMC Bioinformatics, 2022, 23, 68.	1.2	2
6	Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375, eabg7985.	6.0	110
7	Target-oriented prioritization: targeted selection strategy by integrating organismal and molecular traits through predictive analytics in breeding. Genome Biology, 2022, 23, 80.	3.8	13
8	A reactive oxygen species burst causes haploid induction in maize. Molecular Plant, 2022, 15, 943-955.	3.9	39
9	Crop breeding – From experience-based selection to precision design. Journal of Plant Physiology, 2021, 256, 153313.	1.6	19
10	Phenotypic Plasticity Contributes to Maize Adaptation and Heterosis. Molecular Biology and Evolution, 2021, 38, 1262-1275.	3.5	32
11	<i>Q^{Dtbn1}</i> , an Fâ€box gene affecting maize tassel branch number by a dominant model. Plant Biotechnology Journal, 2021, 19, 1183-1194.	4.1	14
12	The genetic architecture of the dynamic changes in grain moisture in maize. Plant Biotechnology Journal, 2021, 19, 1195-1205.	4.1	35
13	A high-throughput and low-cost maize ear traits scorer. Molecular Breeding, 2021, 41, 1.	1.0	2
14	Seeing is believing: a visualization toolbox to enhance selection efficiency in maize genome editing. Plant Biotechnology Journal, 2021, 19, 872-874.	4.1	10
15	New genomic approaches for enhancing maize genetic improvement. Current Opinion in Plant Biology, 2021, 60, 101977.	3.5	9
16	Using precision phenotyping to inform de novo domestication. Plant Physiology, 2021, 186, 1397-1411.	2.3	7
17	The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22, 148.	3.8	69
18	Domestication of Crop Metabolomes: Desired and Unintended Consequences. Trends in Plant Science, 2021, 26, 650-661.	4.3	60

#	Article	IF	CITATIONS
19	Natural Variation in Crops: Realized Understanding, Continuing Promise. Annual Review of Plant Biology, 2021, 72, 357-385.	8.6	73
20	Mining novel kernel sizeâ€related genes by pQTL mapping and multiâ€omics integrative analysis in developing maize kernels. Plant Biotechnology Journal, 2021, 19, 1489-1491.	4.1	14
21	Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biology, 2021, 22, 185.	3.8	47
22	NPF transporters in synaptic-like vesicles control delivery of iron and copper to seeds. Science Advances, 2021, 7, eabh2450.	4.7	29
23	LightGBM: accelerated genomically designed crop breeding through ensemble learning. Genome Biology, 2021, 22, 271.	3.8	76
24	Genetic basis of kernel nutritional traits during maize domestication and improvement. Plant Journal, 2020, 101, 278-292.	2.8	25
25	The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Plant Communications, 2020, 1, 100010.	3.6	68
26	Application of deep learning in genomics. Science China Life Sciences, 2020, 63, 1860-1878.	2.3	25
27	The Kernel Size-Related Quantitative Trait Locus <i>qKW9</i> Encodes a Pentatricopeptide Repeat Protein That Aaffects Photosynthesis and Grain Filling. Plant Physiology, 2020, 183, 1696-1709.	2.3	29
28	Single-Cell Genomics and Epigenomics: Technologies and Applications in Plants. Trends in Plant Science, 2020, 25, 1030-1040.	4.3	37
29	Sustainable agriculture in the era of omics: knowledge-driven crop breeding. Genome Biology, 2020, 21, 154.	3.8	45
30	Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biology, 2020, 21, 163.	3.8	76
31	ZEAMAP, a Comprehensive Database Adapted to the Maize Multi-Omics Era. IScience, 2020, 23, 101241.	1.9	63
32	MaizeCUBIC: a comprehensive variation database for a maize synthetic population. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	5
33	Targeting Key Genes to Tailor Old and New Crops for a Greener Agriculture. Molecular Plant, 2020, 13, 354-356.	3.9	9
34	CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020, 21, 20.	3.8	57
35	Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. Molecular Plant, 2020, 13, 187-214.	3.9	423
36	Genetic variants and underlying mechanisms influencing variance heterogeneity in maize. Plant Journal, 2020, 103, 1089-1102.	2.8	7

#	Article	IF	CITATIONS
37	High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize. Plant Cell, 2020, 32, 1397-1413.	3.1	148
38	Large-Scale Discovery of Non-conventional Peptides in Maize and Arabidopsis through an Integrated Peptidogenomic Pipeline. Molecular Plant, 2020, 13, 1078-1093.	3.9	58
39	Metabolomics analysis reveals differences in evolution between maize and rice. Plant Journal, 2020, 103, 1710-1722.	2.8	41
40	Structural variation in complex genome: detection, integration and function. Science China Life Sciences, 2019, 62, 1098-1100.	2.3	7
41	SEED CAROTENOID DEFICIENT Functions in Isoprenoid Biosynthesis via the Plastid MEP Pathway. Plant Physiology, 2019, 179, 1723-1738.	2.3	18
42	An allele of <i>Zm<scp>PORB</scp>2</i> encoding a protochlorophyllide oxidoreductase promotes tocopherol accumulation in both leaves and kernels of maize. Plant Journal, 2019, 100, 114-127.	2.8	21
43	Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 2019, 51, 1052-1059.	9.4	202
44	Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nature Communications, 2019, 10, 2632.	5.8	93
45	De Novo Domestication: An Alternative Route toward New Crops for the Future. Molecular Plant, 2019, 12, 615-631.	3.9	267
46	Largeâ€scale metabolite quantitative trait locus analysis provides new insights for highâ€quality maize improvement. Plant Journal, 2019, 99, 216-230.	2.8	37
47	Leveraging <scp>GWAS</scp> data to identify metabolic pathways and networks involved in maize lipid biosynthesis. Plant Journal, 2019, 98, 853-863.	2.8	37
48	Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nature Communications, 2019, 10, 785.	5.8	36
49	Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biology, 2019, 20, 243.	3.8	65
50	Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nature Genetics, 2019, 51, 1540-1548.	9.4	138
51	Crop genomeâ€wide association study: a harvest of biological relevance. Plant Journal, 2019, 97, 8-18.	2.8	151
52	CRISPR-Local: a local single-guide RNA (sgRNA) design tool for non-reference plant genomes. Bioinformatics, 2019, 35, 2501-2503.	1.8	28
53	An integrated multiâ€layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. Plant Journal, 2018, 93, 1116-1128.	2.8	38
54	Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnology Journal, 2018, 16, 1464-1475.	4.1	70

#	Article	IF	CITATIONS
55	Intraspecific variation of residual heterozygosity and its utility for quantitative genetic studies in maize. BMC Plant Biology, 2018, 18, 66.	1.6	22
56	Genome-Wide Association Analyses Reveal the Importance of Alternative Splicing in Diversifying Gene Function and Regulating Phenotypic Variation in Maize. Plant Cell, 2018, 30, 1404-1423.	3.1	66
57	Distant eQTLs and Non-coding Sequences Play Critical Roles in Regulating Gene Expression and Quantitative Trait Variation in Maize. Molecular Plant, 2017, 10, 414-426.	3.9	137
58	A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction inÂMaize. Molecular Plant, 2017, 10, 520-522.	3.9	219
59	The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant Biotechnology Journal, 2017, 15, 1250-1263.	4.1	72
60	High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth. Plant Physiology, 2017, 173, 1554-1564.	2.3	179
61	Genome-wide Association Studies in Maize: Praise and Stargaze. Molecular Plant, 2017, 10, 359-374.	3.9	334
62	The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations. Plant Physiology, 2017, 175, 858-873.	2.3	97
63	The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice. Plant Physiology, 2017, 175, 774-785.	2.3	114
64	Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nature Communications, 2017, 8, 1874.	5.8	102
65	Genomeâ€wide recombination dynamics are associated with phenotypic variation in maize. New Phytologist, 2016, 210, 1083-1094.	3.5	88
66	Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Scientific Reports, 2016, 6, 18936.	1.6	68
67	Broadening Our Portfolio in the Genetic Improvement of Maize Chemical Composition. Trends in Genetics, 2016, 32, 459-469.	2.9	25
68	Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58Â×ÂSK maize population. Theoretical and Applied Genetics, 2016, 129, 1465-1477.	1.8	84
69	Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48, 1233-1241.	9.4	438
70	MODEM: multi-omics data envelopment and mining in maize. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw117.	1.4	39
71	Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel. Plant Physiology, 2016, 170, 136-146.	2.3	62
72	Genomeâ€wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210, 1095-1106.	3.5	142

#	Article	IF	CITATIONS
73	Maize orthologs of rice <i>GS5</i> and their transâ€regulator are associated with kernel development. Journal of Integrative Plant Biology, 2015, 57, 943-953.	4.1	55
74	Genomic, Transcriptomic, and Phenomic Variation Reveals the Complex Adaptation of Modern Maize Breeding. Molecular Plant, 2015, 8, 871-884.	3.9	72
75	Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population. Plant Cell, 2015, 27, 1839-1856.	3.1	149
76	A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015, 66, 3791-3802.	2.4	79
77	Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize. Nature Communications, 2015, 6, 6648.	5.8	97
78	A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 2015, 6, 8326.	5.8	392
79	Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. BMC Plant Biology, 2015, 15, 206.	1.6	74
80	Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize. Theoretical and Applied Genetics, 2015, 128, 2341-2350.	1.8	18
81	Genome Wide Association Studies Using a New Nonparametric Model Reveal the Genetic Architecture of 17 Agronomic Traits in an Enlarged Maize Association Panel. PLoS Genetics, 2014, 10, e1004573.	1.5	307
82	Genetic basis of grain yield heterosis in an "immortalized F2―maize population. Theoretical and Applied Genetics, 2014, 127, 2149-2158.	1.8	83
83	Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Communications, 2014, 5, 3438.	5.8	402
84	Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45, 43-50.	9.4	764
85	Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theoretical and Applied Genetics, 2013, 126, 923-935.	1.8	53
86	RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 2013, 4, 2832.	5.8	252
87	CACTA-like transposable element in <i>ZmCCT</i> attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16969-16974.	3.3	296
88	Genome-Wide Association Studies Identified Three Independent Polymorphisms Associated with α-Tocopherol Content in Maize Kernels. PLoS ONE, 2012, 7, e36807.	1.1	140
89	Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. Molecular Breeding, 2012, 29, 939-949.	1.0	36
90	An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain. PLoS ONE, 2011, 6, e24699.	1.1	42

#	Article	IF	CITATIONS
91	Association Mapping for Enhancing Maize (<i>Zea mays</i> L.) Genetic Improvement. Crop Science, 2011, 51, 433-449.	0.8	305
92	Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28, 511-526.	1.0	324
93	Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theoretical and Applied Genetics, 2010, 120, 665-678.	1.8	125
94	Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species. Theoretical and Applied Genetics, 2010, 120, 709-720.	1.8	36
95	Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theoretical and Applied Genetics, 2010, 120, 753-763.	1.8	126
96	Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theoretical and Applied Genetics, 2010, 121, 417-431.	1.8	176
97	Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biology, 2010, 10, 143.	1.6	179
98	Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nature Genetics, 2010, 42, 322-327.	9.4	421
99	Natural Genetic Variation in <i>Lycopene Epsilon Cyclase</i> Tapped for Maize Biofortification. Science, 2008, 319, 330-333.	6.0	692
100	De Novo Domestication in the Multi-Omics Era. Plant and Cell Physiology, 0, , .	1.5	4