Kum Kum Khanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1749205/publications.pdf

Version: 2024-02-01

84 papers 7,633 citations

36 h-index 80 g-index

92 all docs 92 docs citations 92 times ranked 13190 citing authors

#	Article	IF	CITATIONS
1	Epigenome erosion and SOX10 drive neural crest phenotypic mimicry in triple-negative breast cancer. Npj Breast Cancer, 2022, 8, 57.	5.2	11
2	CX-5461 Enhances the Efficacy of APR-246 via Induction of DNA Damage and Replication Stress in Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 5782.	4.1	16
3	WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis. Communications Biology, 2021, 4, 645.	4.4	5
4	Cavin3 released from caveolae interacts with BRCA1 to regulate the cellular stress response. ELife, 2021, 10, .	6.0	11
5	Targeting BRF2 in Cancer Using Repurposed Drugs. Cancers, 2021, 13, 3778.	3.7	8
6	Differential Regulation of Lacto-/Neolacto- Glycosphingolipid Biosynthesis Pathway Reveals Transcription Factors as Potential Candidates in Triple-Negative Breast Cancer. Cancers, 2021, 13, 3330.	3.7	1
7	hSSB2 (NABP1) is required for the recruitment of RPA during the cellular response to DNA UV damage. Scientific Reports, 2021, 11, 20256.	3.3	6
8	Cep55 regulation of PI3K/Akt signaling is required for neocortical development and ciliogenesis. PLoS Genetics, 2021, 17, e1009334.	3 . 5	4
9	Therapeutic cooperation between auranofin, a thioredoxin reductase inhibitor and antiâ€PDâ€L1 antibody for treatment of tripleâ€negative breast cancer. International Journal of Cancer, 2020, 146, 123-136.	5.1	63
10	Anticancer activity of a Gold(I) phosphine thioredoxin reductase inhibitor in multiple myeloma. Redox Biology, 2020, 28, 101310.	9.0	47
11	Cep55 overexpression promotes genomic instability and tumorigenesis in mice. Communications Biology, 2020, 3, 593.	4.4	17
12	Complexities of pharmacogenomic interactions in cancer. Molecular and Cellular Oncology, 2020, 7, 1735910.	0.7	4
13	CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nature Communications, 2020, 11, 2641.	12.8	90
14	Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition. Theranostics, 2020, 10, 5259-5275.	10.0	39
15	The implication of the SUMOylation pathway in breast cancer pathogenesis and treatment. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 54-70.	5.2	9
16	RNA-binding protein NONO contributes to cancer cell growth and confers drug resistance as a theranostic target in TNBC. Theranostics, 2020, 10, 7974-7992.	10.0	42
17	Chromosome arm aneuploidies shape tumour evolution and drug response. Nature Communications, 2020, 11, 449.	12.8	65
18	First meiotic anaphase requires Cep55-dependent inhibitory Cdk1 phosphorylation. Journal of Cell Science, 2019, 132, .	2.0	12

#	Article	IF	CITATIONS
19	GSK3- \hat{l}^2 Stimulates Claspin Degradation via \hat{l}^2 -TrCP Ubiquitin Ligase and Alters Cancer Cell Survival. Cancers, 2019, 11, 1073.	3.7	3
20	Mechanisms of Genomic Instability in Breast Cancer. Trends in Molecular Medicine, 2019, 25, 595-611.	6.7	109
21	A Comprehensive Review on Current Advances in Peptide Drug Development and Design. International Journal of Molecular Sciences, 2019, 20, 2383.	4.1	413
22	MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells. Oncogene, 2019, 38, 5239-5249.	5.9	20
23	Blockade of PDGFRβ circumvents resistance to MEK-JAK inhibition via intratumoral CD8+ T-cells infiltrationÂin triple-negative breast cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 85.	8.6	13
24	Patterns of Genomic Instability in Breast Cancer. Trends in Pharmacological Sciences, 2019, 40, 198-211.	8.7	68
25	Mitotic slippage: an old tale with a new twist. Cell Cycle, 2019, 18, 7-15.	2.6	81
26	Characterization of a novel breast cancer cell line derived from a metastatic bone lesion of a breast cancer patient. Breast Cancer Research and Treatment, 2018, 170, 179-188.	2.5	5
27	The breast cancer antigen 5T4 interacts with Rab11, and is a target and regulator of Rab11 mediated trafficking. International Journal of Biochemistry and Cell Biology, 2018, 99, 28-37.	2.8	5
28	Multidimensional phenotyping of breast cancer cell lines to guide preclinical research. Breast Cancer Research and Treatment, 2018, 167, 289-301.	2.5	27
29	Optimizing poly (<scp>ADP</scp> â€ribose) polymerase inhibition through combined epigenetic and immunotherapy. Cancer Science, 2018, 109, 3383-3392.	3.9	28
30	<scp>CEP</scp> 55 is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Molecular Medicine, 2018, 10, .	6.9	59
31	Cep55 overexpression causes maleâ€specific sterility in mice by suppressing Foxo1 nuclear retention through sustained activation of PI3K/Akt signaling. FASEB Journal, 2018, 32, 4984-4999.	0.5	43
32	RAD51 paralogs promote genomic integrity and chemoresistance in cancer by facilitating homologous recombination. Annals of Translational Medicine, 2018, 6, S122-S122.	1.7	6
33	Serendipity, luck and hard work. Nature Cell Biology, 2018, 20, 1004-1004.	10.3	0
34	Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress. Blood, 2017, 129, 2479-2492.	1.4	18
35	Enhanced dependency of <scp>KRAS</scp> â€mutant colorectal cancer cells on <scp>RAD</scp> 51â€dependent homologous recombination repair identified from genetic interactions in <i>Saccharomyces cerevisiae</i> . Molecular Oncology, 2017, 11, 470-490.	4.6	33
36	Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 2017, 543, 65-71.	27.8	716

3

#	Article	IF	Citations
37	Identification of ATM-Interacting Proteins by Co-immunoprecipitation and Glutathione-S-Transferase (GST) Pull-Down Assays. Methods in Molecular Biology, 2017, 1599, 163-181.	0.9	5
38	DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. Journal of Biological Chemistry, 2017, 292, 10779-10790.	3.4	61
39	Quinazolinone derivatives as inhibitors of homologous recombinase RAD51. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3096-3100.	2.2	17
40	The metastasis suppressor RARRES3 as an endogenous inhibitor of the immunoproteasome expression in breast cancer cells. Scientific Reports, 2017, 7, 39873.	3.3	21
41	Long Noncoding RNAs CUPID1 and CUPID2 Mediate Breast Cancer Risk at 11q13 by Modulating the Response to DNA Damage. American Journal of Human Genetics, 2017, 101, 255-266.	6.2	77
42	Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination. Stem Cell Reports, 2017, 9, 1660-1674.	4.8	33
43	Signaling to the Epigenome: New Insights into the Roles of Nuclear Signaling Kinases in the Context of the Immune System and Cancer. Frontiers in Immunology, 2017, 8, 980.	4.8	0
44	Adenosine 2B Receptor Expression on Cancer Cells Promotes Metastasis. Cancer Research, 2016, 76, 4372-4382.	0.9	130
45	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
46	Integrating Multi-omics Data to Dissect Mechanisms of DNA repair Dysregulation in Breast Cancer. Scientific Reports, 2016, 6, 34000.	3.3	8
47	High content screening application for cell-type specific behaviour in heterogeneous primary breast epithelial subpopulations. Breast Cancer Research, 2016, 18, 18.	5.0	9
48	Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach. Molecular BioSystems, 2016, 12, 963-972.	2.9	25
49	Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling. Oncotarget, 2016, 7, 49800-49818.	1.8	93
50	Germline polymorphisms in an enhancer of <i>PSIP1</i> are associated with progression-free survival in epithelial ovarian cancer. Oncotarget, 2016, 7, 6353-6368.	1.8	29
51	Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. Journal of Pathology, 2015, 237, 363-378.	4.5	98
52	Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish. FASEB Journal, 2015, 29, 1999-2009.	0.5	24
53	Single-Strand DNA-Binding Protein SSB1 Facilitates TERT Recruitment to Telomeres and Maintains Telomere G-Overhangs. Cancer Research, 2015, 75, 858-869.	0.9	19
54	The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Research, 2015, 25, 288-305.	12.0	113

#	Article	IF	CITATIONS
55	The Nuclear Oncogene SET Controls DNA Repair by KAP1 and HP1 Retention to Chromatin. Cell Reports, 2015, 11, 149-163.	6.4	82
56	$\mbox{\sc i} \times Ssb2/Nabp1 < \mbox{\sc i} \times Ssb2/Nabp1 < $	0.5	11
57	ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1. Nucleic Acids Research, 2015, 43, 8352-8367.	14.5	54
58	Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease. Trends in Pharmacological Sciences, 2015, 36, 822-846.	8.7	242
59	Differences in Expression of Key DNA Damage Repair Genes after Epigenetic-Induced BRCAness Dictate Synthetic Lethality with PARP1 Inhibition. Molecular Cancer Therapeutics, 2015, 14, 2321-2331.	4.1	42
60	Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib. PLoS ONE, 2015, 10, e0125232.	2.5	27
61	MEK5-ERK5 pathway associates with poor survival of breast cancer patients after systemic treatments. Oncoscience, 2015, 2, 99-101.	2.2	26
62	Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget, 2015, 6, 3932-3946.	1.8	60
63	SSB1/NABP2 and SSB2/NABP1 Have Essential and Overlapping Roles in Maintaining Hematopoietic Stem and Progenitor Cells. Blood, 2015, 126, 2405-2405.	1.4	0
64	Human single-stranded DNA binding protein 1 (hSSB1/NABP2) is required for the stability and repair of stalled replication forks. Nucleic Acids Research, 2014, 42, 6326-6336.	14.5	48
65	Gemcitabine and CHK1 Inhibition Potentiate EGFR-Directed Radioimmunotherapy against Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2014, 20, 3187-3197.	7.0	32
66	Selenoprotein S is a marker but not a regulator of endoplasmic reticulum stress in intestinal epithelial cells. Free Radical Biology and Medicine, 2014, 67, 265-277.	2.9	34
67	Natural Killer Cells Are Essential for the Ability of BRAF Inhibitors to Control BRAFV600E-Mutant Metastatic Melanoma. Cancer Research, 2014, 74, 7298-7308.	0.9	96
68	SCF-FBXO31 E3 Ligase Targets DNA Replication Factor Cdt1 for Proteolysis in the G2 Phase of Cell Cycle to Prevent Re-replication. Journal of Biological Chemistry, 2014, 289, 18514-18525.	3.4	49
69	Chromatinized Protein Kinase C-θ Directly Regulates Inducible Genes in Epithelial to Mesenchymal Transition and Breast Cancer Stem Cells. Molecular and Cellular Biology, 2014, 34, 2961-2980.	2.3	40
70	Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nature Communications, 2014, 5, 3561.	12.8	143
71	Centrobin regulates centrosome function in interphase cells by limiting pericentriolar matrix recruitment. Cell Cycle, 2013, 12, 899-906.	2.6	15
72	Mouse models uncap novel roles of SSBs. Cell Research, 2013, 23, 744-745.	12.0	5

#	Article	IF	CITATIONS
73	Essential Developmental, Genomic Stability, and Tumour Suppressor Functions of the Mouse Orthologue of hSSB1/NABP2. PLoS Genetics, 2013, 9, e1003298.	3.5	28
74	hSSB1 and hSSB2 Form Similar Multiprotein Complexes That Participate in DNA Damage Response. Journal of Biological Chemistry, 2009, 284, 23525-23531.	3.4	98
75	Cep55 stabilization is required for normal execution of cytokinesis. Cell Cycle, 2009, 8, 3742-3749.	2.6	35
76	Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 98-116.	5.2	96
77	The Peptidyl-Prolyl Isomerase Pin1 Regulates Cytokinesis through Cep55. Cancer Research, 2009, 69, 6651-6659.	0.9	41
78	INTS3 controls the hSSB1-mediated DNA damage response. Journal of Cell Biology, 2009, 187, 25-32.	5.2	80
79	Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature, 2008, 453, 677-681.	27.8	220
80	Cdk1/Erk2- and Plk1-Dependent Phosphorylation of a Centrosome Protein, Cep55, Is Required for Its Recruitment to Midbody and Cytokinesis. Developmental Cell, 2005, 9, 477-488.	7.0	273
81	DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genetics, 2001, 27, 247-254.	21.4	2,116
82	Ataxia-telangiectasia: chronic activation of damage-responsive functions is reduced by \hat{l} ±-lipoic acid. Oncogene, 2001, 20, 289-294.	5.9	68
83	Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene, 1997, 14, 1911-1921.	5.9	172
84	Interaction between ATM protein and c-Abl in response to DNA damage. Nature, 1997, 387, 520-523.	27.8	460