Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1748261/publications.pdf Version: 2024-02-01

		236925	395702
33	2,528	25	33
papers	citations	h-index	g-index
33	33	33	2432
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Selfâ€Quenchingâ€Resistant Carbonâ€Dot Powder with Tunable Solidâ€State Fluorescence and Construction of Dualâ€Fluorescence Morphologies for White Lightâ€Emission. Advanced Materials, 2016, 28, 312-318.	21.0	527
2	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie - International Edition, 2019, 58, 7278-7283.	13.8	266
3	Enhanced Biological Photosynthetic Efficiency Using Lightâ€Harvesting Engineering with Dualâ€Emissive Carbon Dots. Advanced Functional Materials, 2018, 28, 1804004.	14.9	189
4	A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 2020, 4, 437-448.	5.9	139
5	Aqueous Phase Synthesis of Highly Luminescent, Nitrogen-Doped Carbon Dots and Their Application as Bioimaging Agents. Langmuir, 2014, 30, 14270-14275.	3.5	111
6	Ultrastable red-emitting phosphor-in-glass for superior high-power artificial plant growth LEDs. Journal of Materials Chemistry C, 2018, 6, 1738-1745.	5.5	95
7	Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates. Journal of Materials Chemistry C, 2017, 5, 6243-6250.	5.5	91
8	The room temperature afterglow mechanism in carbon dots: Current state and further guidance perspective. Carbon, 2020, 165, 306-316.	10.3	89
9	Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica. Journal of Materials Chemistry C, 2020, 8, 5744-5751.	5.5	86
10	Construction and multifunctional applications of carbon dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence. Chemical Engineering Journal, 2018, 347, 505-513.	12.7	84
11	Towards efficient dual-emissive carbon dots through sulfur and nitrogen co-doped. Journal of Materials Chemistry C, 2017, 5, 8014-8021.	5.5	73
12	Synthesis of dual-emissive carbon dots with a unique solvatochromism phenomenon. Journal of Colloid and Interface Science, 2019, 555, 607-614.	9.4	66
13	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie, 2019, 131, 7356-7361.	2.0	62
14	Anchoring Carbon Nanodots onto Nanosilica for Phosphorescence Enhancement and Delayed Fluorescence Nascence in Solid and Liquid States. Small, 2020, 16, e2005228.	10.0	61
15	Visible-light excitable thermally activated delayed fluorescence in aqueous solution from F, N-doped carbon dots confined in silica nanoparticles. Chemical Engineering Journal, 2021, 426, 130728.	12.7	55
16	Cr3+ doped ZnGa2O4 far-red emission phosphor-in-glass: Toward high-power and color-stable plant growth LEDs with responds to all of phytochrome. Materials Research Bulletin, 2018, 108, 226-233.	5.2	47
17	<i>Salvia Miltiorrhiza</i> -Derived Carbon Dots as Scavengers of Reactive Oxygen Species for Reducing Oxidative Damage of Plants. ACS Applied Nano Materials, 2021, 4, 113-120.	5.0	44
18	Preparation and Properties of Carbon Dotâ€Grafted CaAl ₁₂ O ₁₉ :Mn ⁴⁺ Colorâ€Tunable Hybrid Phosphor. Advanced Optical Materials, 2016, 4, 427-434.	7.3	42

LI WANG

#	Article	IF	CITATIONS
19	Biomimetic preparation of silicon quantum dots and their phytophysiology effect on cucumber seedlings. Journal of Materials Chemistry B, 2019, 7, 1107-1115.	5.8	40
20	Promoting the Growth of Mung Bean Plants through Uptake and Light Conversion of NaYF ₄ :Yb,Er@CDs Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 9751-9762.	6.7	40
21	Pollen derived blue fluorescent carbon dots for bioimaging and monitoring of nitrogen, phosphorus and potassium uptake in Brassica parachinensisÂL RSC Advances, 2017, 7, 33459-33465.	3.6	39
22	Hierarchical NiO mesocrystals with tuneable high-energy facets for pseudocapacitive charge storage. Journal of Materials Chemistry A, 2017, 5, 6921-6927.	10.3	38
23	Energy Transfer Mediated Enhancement of Roomâ€Temperature Phosphorescence of Carbon Dots Embedded in Matrixes. Advanced Optical Materials, 2022, 10, .	7.3	38
24	Synthesis and characterization of Y2O2S:Eu3+, Mg2+, Ti4+ hollow nanospheres via a template-free route. Journal of Alloys and Compounds, 2012, 542, 207-212.	5.5	36
25	A dual-emitting core–shell carbon dot–silica–phosphor composite for white light emission. Nanoscale, 2015, 7, 20142-20148.	5.6	33
26	Optical Energy Storage Properties of (Ca _{1â~<i>x</i>} Sr _{<i>x</i>}) ₂ Si ₅ N ₈ : Eu ²⁺ , Tm ³⁺ Solid Solutions. Journal of the American Ceramic Society, 2015, 98, 1823-1828.	3.8	25
27	Luminescent carbon dots assembled SBA-15 and its oxygen sensing properties. Sensors and Actuators B: Chemical, 2016, 230, 101-108.	7.8	24
28	A dual-emitting core–shell carbon dot–silica–phosphor composite for LED plant grow light. RSC Advances, 2017, 7, 16662-16667.	3.6	24
29	The role of fluorescent carbon dots in crops: Mechanism and applications. SmartMat, 2022, 3, 208-225.	10.7	21
30	Red persistent and photo-stimulated luminescence properties of SrCaSi5N8: Eu2+, Tm3+ solid solution. Optical Materials, 2014, 36, 1855-1858.	3.6	18
31	Simple Additive-Free Method to Manganese Monoxide Mesocrystals and Their Template Application for the Synthesis of Carbon and Graphitic Hollow Octahedrons. ACS Applied Materials & Interfaces, 2013, 5, 12561-12570.	8.0	10
32	Room temperature phosphorescence from Si-doped-CD-based composite materials with long lifetimes and high stability. Optics Express, 2020, 28, 19550.	3.4	9
33	Enhanced persistent properties of Mn ²⁺ activated CaZnOS. RSC Advances, 2017, 7, 38498-38505.	3.6	6