Charles O O Rock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1748208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology, 2008, 6, 222-233.	13.6	1,070
2	THE STRUCTURAL BIOLOGY OF TYPE II FATTY ACID BIOSYNTHESIS. Annual Review of Biochemistry, 2005, 74, 791-831.	5.0	704
3	Coenzyme A: Back in action. Progress in Lipid Research, 2005, 44, 125-153.	5.3	488
4	Mechanism of Triclosan Inhibition of Bacterial Fatty Acid Synthesis. Journal of Biological Chemistry, 1999, 274, 11110-11114.	1.6	451
5	Bacterial lipids: Metabolism and membrane homeostasis. Progress in Lipid Research, 2013, 52, 249-276.	5.3	377
6	Enoyl-Acyl Carrier Protein Reductase (fabl) Plays a Determinant Role in Completing Cycles of Fatty Acid Elongation in Escherichia coli. Journal of Biological Chemistry, 1995, 270, 26538-26542.	1.6	317
7	Broad Spectrum Antimicrobial Biocides Target the Fabl Component of Fatty Acid Synthesis. Journal of Biological Chemistry, 1998, 273, 30316-30320.	1.6	309
8	Inhibition of β-Ketoacyl-Acyl Carrier Protein Synthases by Thiolactomycin and Cerulenin. Journal of Biological Chemistry, 2001, 276, 6551-6559.	1.6	296
9	Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Lipids and Lipid Metabolism, 1996, 1302, 1-16.	2.6	292
10	Lipid biosynthesis as a target for antibacterial agents. Progress in Lipid Research, 2001, 40, 467-497.	5.3	290
11	Roles of the FabA and FabZ β-Hydroxyacyl-Acyl Carrier Protein Dehydratases in Escherichia coli Fatty Acid Biosynthesis. Journal of Biological Chemistry, 1996, 271, 27795-27801.	1.6	268
12	A triclosan-resistant bacterial enzyme. Nature, 2000, 406, 145-146.	13.7	254
13	β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) Is a Determining Factor in Branched-Chain Fatty Acid Biosynthesis. Journal of Bacteriology, 2000, 182, 365-370.	1.0	239
14	The Claisen condensation in biology. Natural Product Reports, 2002, 19, 581-596.	5.2	224
15	Inhibiting Bacterial Fatty Acid Synthesis. Journal of Biological Chemistry, 2006, 281, 17541-17544.	1.6	223
16	Inhibition of the Staphylococcus aureusNADPH-dependent Enoyl-Acyl Carrier Protein Reductase by Triclosan and Hexachlorophene. Journal of Biological Chemistry, 2000, 275, 4654-4659.	1.6	221
17	The 1.8 à crystal structure and active-site architecture of β-ketoacyl-acyl carrier protein synthase III (FabH) from Escherichia coli. Structure, 2000, 8, 185-195.	1.6	212
18	Inhibition of β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) by Acyl-Acyl Carrier Protein in Escherichia coli. Journal of Biological Chemistry, 1996, 271, 10996-11000.	1.6	198

#	Article	IF	CITATIONS
19	Forty Years of Bacterial Fatty Acid Synthesis. Biochemical and Biophysical Research Communications, 2002, 292, 1155-1166.	1.0	191
20	Regulation of Fatty Acid Elongation and Initiation by Acyl-Acyl Carrier Protein in Escherichia coli. Journal of Biological Chemistry, 1996, 271, 1833-1836.	1.6	187
21	Evaluation of Epigallocatechin Gallate and Related Plant Polyphenols as Inhibitors of the FabG and Fabl Reductases of Bacterial Type II Fatty-acid Synthase. Journal of Biological Chemistry, 2004, 279, 30994-31001.	1.6	183
22	Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15378-15383.	3.3	178
23	Pantothenate Kinase Regulation of the Intracellular Concentration of Coenzyme A. Journal of Biological Chemistry, 2000, 275, 1377-1383.	1.6	173
24	Identification and Substrate Specificity of β-Ketoacyl (Acyl Carrier Protein) Synthase III (mtFabH) from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2000, 275, 28201-28207.	1.6	165
25	The Enoyl-[acyl-carrier-protein] Reductases Fabl and FabL fromBacillus subtilis. Journal of Biological Chemistry, 2000, 275, 40128-40133.	1.6	160
26	RhlA Converts β-Hydroxyacyl-Acyl Carrier Protein Intermediates in Fatty Acid Synthesis to the β-Hydroxydecanoyl-β-Hydroxydecanoate Component of Rhamnolipids in <i>Pseudomonas aeruginosa</i> . Journal of Bacteriology, 2008, 190, 3147-3154.	1.0	158
27	Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?. Current Opinion in Microbiology, 2011, 14, 544-549.	2.3	158
28	Phosphatidic acid synthesis in bacteria. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 495-502.	1.2	154
29	Membrane Disruption by Antimicrobial Fatty Acids Releases Low-Molecular-Weight Proteins from Staphylococcus aureus. Journal of Bacteriology, 2012, 194, 5294-5304.	1.0	151
30	Identification and Analysis of the Acyl Carrier Protein (ACP) Docking Site on β-Ketoacyl-ACP Synthase III. Journal of Biological Chemistry, 2001, 276, 8231-8238.	1.6	150
31	Acyl-Phosphates Initiate Membrane Phospholipid Synthesis in Gram-Positive Pathogens. Molecular Cell, 2006, 23, 765-772.	4.5	147
32	Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10532-10537.	3.3	141
33	A Conserved Histidine Is Essential for Glycerolipid Acyltransferase Catalysis. Journal of Bacteriology, 1998, 180, 1425-1430.	1.0	139
34	Structure of β-Ketoacyl-[acyl carrier protein] Reductase fromEscherichia coli: Negative Cooperativity and Its Structural Basisâ€,‡. Biochemistry, 2001, 40, 12772-12781.	1.2	138
35	Cofactor-Induced Conformational Rearrangements Establish a Catalytically Competent Active Site and a Proton Relay Conduit in FabG. Structure, 2004, 12, 417-428.	1.6	136
36	Key Residues Responsible for Acyl Carrier Protein and β-Ketoacyl-Acyl Carrier Protein Reductase (FabC) Interaction. Journal of Biological Chemistry, 2003, 278, 52935-52943.	1.6	135

#	Article	IF	CITATIONS
37	Product diversity and regulation of type II fatty acid synthases. Biochemistry and Cell Biology, 2004, 82, 145-155.	0.9	133
38	The Structure of (3R)-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) from Pseudomonas aeruginosa. Journal of Biological Chemistry, 2004, 279, 52593-52602.	1.6	121
39	Thematic Review Series: Glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. Journal of Lipid Research, 2008, 49, 1867-1874.	2.0	115
40	Transcriptional regulation of fatty acid biosynthesis inStreptococcus pneumoniae. Molecular Microbiology, 2006, 59, 551-566.	1.2	114
41	[41] Acyl carrier protein from Escherichia coli. Methods in Enzymology, 1981, 71 Pt C, 341-351.	0.4	113
42	The FadR·DNA Complex. Journal of Biological Chemistry, 2001, 276, 17373-17379.	1.6	113
43	The Solution Structure of Acyl Carrier Protein from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2002, 277, 15874-15880.	1.6	111
44	Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Molecular Microbiology, 2006, 60, 260-273.	1.2	110
45	A New Mechanism for Anaerobic Unsaturated Fatty Acid Formation inStreptococcus pneumoniae. Journal of Biological Chemistry, 2002, 277, 44809-44816.	1.6	108
46	Exogenous fatty acid metabolism in bacteria. Biochimie, 2017, 141, 30-39.	1.3	106
47	Chemical Knockout of Pantothenate Kinase Reveals the Metabolic and Genetic Program Responsible for Hepatic Coenzyme A Homeostasis. Chemistry and Biology, 2007, 14, 291-302.	6.2	105
48	The FabR (YijC) Transcription Factor Regulates Unsaturated Fatty Acid Biosynthesis in Escherichia coli. Journal of Biological Chemistry, 2002, 277, 15558-15565.	1.6	104
49	Characterization of Streptococcus pneumoniae enoyl-(acyl-carrier protein) reductase (FabK). Biochemical Journal, 2003, 370, 1055-1062.	1.7	100
50	How Bacterial Pathogens Eat Host Lipids: Implications for the Development of Fatty Acid Synthesis Therapeutics. Journal of Biological Chemistry, 2015, 290, 5940-5946.	1.6	99
51	The application of computational methods to explore the diversity and structure of bacterial fatty acid synthase. Journal of Lipid Research, 2003, 44, 1-10.	2.0	94
52	Pyruvate Oxidase as a Critical Link between Metabolism and Capsule Biosynthesis in Streptococcus pneumoniae. PLoS Pathogens, 2016, 12, e1005951.	2.1	93
53	Coupling of Fatty Acid and Phospholipid Synthesis in Bacillus subtilis. Journal of Bacteriology, 2007, 189, 5816-5824.	1.0	91
54	Incorporation of extracellular fatty acids by a fatty acid kinaseâ€dependent pathway in <scp><i>S</i></scp> <i>taphylococcus aureus</i> . Molecular Microbiology, 2014, 92, 234-245.	1.2	90

#	Article	IF	CITATIONS
55	A Pantothenate Kinase from Staphylococcus aureus Refractory to Feedback Regulation by Coenzyme A. Journal of Biological Chemistry, 2005, 280, 3314-3322.	1.6	85
56	Pantothenate Kinase 1 Is Required to Support the Metabolic Transition from the Fed to the Fasted State. PLoS ONE, 2010, 5, e11107.	1.1	82
57	Transcriptional regulation in bacterial membrane lipid synthesis. Journal of Lipid Research, 2009, 50, S115-S119.	2.0	81
58	Regulation of Malonyl-CoA Metabolism by Acyl-Acyl Carrier Protein and β-Ketoacyl-Acyl Carrier Protein Synthases in Escherichia coli. Journal of Biological Chemistry, 1995, 270, 15531-15538.	1.6	79
59	Structureâ^'Activity Relationships at the 5-Position of Thiolactomycin:Â An Intact (5R)-Isoprene Unit Is Required for Activity against the Condensing Enzymes fromMycobacteriumtuberculosisandEscherichiacoli. Journal of Medicinal Chemistry, 2006, 49, 159-171.	2.9	79
60	Structural basis for the transcriptional regulation of membrane lipid homeostasis. Nature Structural and Molecular Biology, 2010, 17, 971-975.	3.6	79
61	Crystal Structures of Human Pantothenate Kinases. Journal of Biological Chemistry, 2007, 282, 27984-27993.	1.6	77
62	PqsD Is Responsible for the Synthesis of 2,4-Dihydroxyquinoline, an Extracellular Metabolite Produced by Pseudomonas aeruginosa. Journal of Biological Chemistry, 2008, 283, 28788-28794.	1.6	77
63	Acyl Carrier Protein Is a Cellular Target for the Antibacterial Action of the Pantothenamide Class of Pantothenate Antimetabolites. Journal of Biological Chemistry, 2004, 279, 50969-50975.	1.6	76
64	Biochemical Properties of Human Pantothenate Kinase 2 Isoforms and Mutations Linked to Pantothenate Kinase-associated Neurodegeneration. Journal of Biological Chemistry, 2006, 281, 107-114.	1.6	76
65	Response of Bacillus subtilis to Cerulenin and Acquisition of Resistance. Journal of Bacteriology, 2001, 183, 3032-3040.	1.0	75
66	Role of Feedback Regulation of Pantothenate Kinase (CoaA) in Control of Coenzyme A Levels in Escherichia coli. Journal of Bacteriology, 2003, 185, 3410-3415.	1.0	75
67	Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1494-1499.	3.3	75
68	Feedback Regulation of Murine Pantothenate Kinase 3 by Coenzyme A and Coenzyme A Thioesters. Journal of Biological Chemistry, 2005, 280, 32594-32601.	1.6	74
69	Transcriptional Regulation of Membrane Lipid Homeostasis in Escherichia coli. Journal of Biological Chemistry, 2009, 284, 34880-34888.	1.6	72
70	The murine pantothenate kinase (Pank1) gene encodes two differentially regulated pantothenate kinase isozymes. Gene, 2002, 291, 35-43.	1.0	71
71	Bacterial fatty acid metabolism in modern antibiotic discovery. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1300-1309.	1.2	70
72	Acyl-Acyl Carrier Protein Regulates Transcription of Fatty Acid Biosynthetic Genes via the FabT Repressor in Streptococcus pneumoniae. Journal of Biological Chemistry, 2009, 284, 15364-15368.	1.6	69

#	Article	IF	CITATIONS
73	The reductase steps of the type II fatty acid synthase as antimicrobial targets. Lipids, 2004, 39, 1055-1060.	0.7	68
74	Roles of the Active Site Water, Histidine 303, and Phenylalanine 396 in the Catalytic Mechanism of the Elongation Condensing Enzyme of Streptococcus pneumoniae. Journal of Biological Chemistry, 2006, 281, 17390-17399.	1.6	65
75	FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in <i>Listeria monocytogenes</i> . FEMS Microbiology Letters, 2009, 301, 188-192.	0.7	65
76	A therapeutic approach to pantothenate kinase associated neurodegeneration. Nature Communications, 2018, 9, 4399.	5.8	65
77	Fatty acid biosynthesis as a target for novel antibacterials. Current Opinion in Investigational Drugs, 2004, 5, 146-53.	2.3	65
78	A σ ^W â€dependent stress response in <i>Bacillus subtilis</i> that reduces membrane fluidity. Molecular Microbiology, 2011, 81, 69-79.	1.2	64
79	A two-helix motif positions the lysophosphatidic acid acyltransferase active site for catalysis within the membrane bilayer. Nature Structural and Molecular Biology, 2017, 24, 666-671.	3.6	64
80	Structure–activity relationships and enzyme inhibition of pantothenamide-type pantothenate kinase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 1007-1020.	1.4	61
81	Identification of a Soluble Diacylglycerol Kinase Required for Lipoteichoic Acid Production in Bacillus subtilis. Journal of Biological Chemistry, 2007, 282, 21738-21745.	1.6	60
82	Localization and regulation of mouse pantothenate kinase 2. FEBS Letters, 2007, 581, 4639-4644.	1.3	59
83	Lysophospholipid Flipping across the Escherichia coli Inner Membrane Catalyzed by a Transporter (LpIT) Belonging to the Major Facilitator Superfamily. Journal of Biological Chemistry, 2005, 280, 12028-12034.	1.6	58
84	The Structural and Functional Basis for Recurring Sulfa Drug Resistance Mutations in Staphylococcus aureus Dihydropteroate Synthase. Frontiers in Microbiology, 2018, 9, 1369.	1.5	58
85	A <i>Pseudomonas aeruginosa</i> transcription factor that senses fatty acid structure. Molecular Microbiology, 2007, 66, 622-632.	1.2	56
86	Analysis of the Staphylococcus aureus DgkB Structure Reveals a Common Catalytic Mechanism for the Soluble Diacylglycerol Kinases. Structure, 2008, 16, 1036-1046.	1.6	53
87	Prokaryotic Type II and Type III Pantothenate Kinases: The Same Monomer Fold Creates DimersÂwith Distinct Catalytic Properties. Structure, 2006, 14, 1251-1261.	1.6	51
88	Biosynthesis of Membrane Lipids. EcoSal Plus, 2008, 3, .	2.1	48
89	The 1.3-Angstrom-Resolution Crystal Structure of β-Ketoacyl-Acyl Carrier Protein Synthase II from Streptococcus pneumoniae. Journal of Bacteriology, 2003, 185, 4136-4143.	1.0	47
90	Modulation of Pantothenate Kinase 3 Activity by Small Molecules that Interact with the Substrate/Allosteric Regulatory Domain. Chemistry and Biology, 2010, 17, 892-902.	6.2	47

#	Article	IF	CITATIONS
91	[27] Preparative enzymatic synthesis of acyl-acyl carrier protein. Methods in Enzymology, 1981, 72, 397-403.	0.4	44
92	Type II Fatty Acid Synthesis Is Essential for the Replication of Chlamydia trachomatis. Journal of Biological Chemistry, 2014, 289, 22365-22376.	1.6	43
93	A Pathogen-Selective Antibiotic Minimizes Disturbance to the Microbiome. Antimicrobial Agents and Chemotherapy, 2016, 60, 4264-4273.	1.4	42
94	Novel Acyl Phosphate Mimics that Target PlsY, an Essential Acyltransferase in Gramâ€Positive Bacteria. ChemMedChem, 2008, 3, 1936-1945.	1.6	40
95	Resistance to AFN-1252 Arises from Missense Mutations in Staphylococcus aureus Enoyl-acyl Carrier Protein Reductase (Fabl). Journal of Biological Chemistry, 2013, 288, 36261-36271.	1.6	40
96	Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis. Journal of Biological Chemistry, 2015, 290, 18874-18888.	1.6	40
97	Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase. Journal of Biological Chemistry, 2015, 290, 22163-22173.	1.6	39
98	Fatty acid activation and utilization by <i>Alistipes finegoldii</i> , a representative Bacteroidetes resident of the human gut microbiome. Molecular Microbiology, 2020, 113, 807-825.	1.2	39
99	Staphylococcus aureus Fatty Acid Auxotrophs Do Not Proliferate in Mice. Antimicrobial Agents and Chemotherapy, 2013, 57, 5729-5732.	1.4	38
100	Topology and Active Site of PlsY. Journal of Biological Chemistry, 2007, 282, 11339-11346.	1.6	34
101	Maternal bile acid transporter deficiency promotes neonatal demise. Nature Communications, 2015, 6, 8186.	5.8	34
102	A Missense Mutation in the fabB (β-Ketoacyl-Acyl Carrier Protein Synthase I) Gene Confers Thiolactomycin Resistance to Escherichia coli. Antimicrobial Agents and Chemotherapy, 2002, 46, 1246-1252.	1.4	33
103	Oleate hydratase from Staphylococcus aureus protects against palmitoleic acid, the major antimicrobial fatty acid produced by mammalian skin. Journal of Biological Chemistry, 2019, 294, 9285-9294.	1.6	33
104	A fatty acid-binding protein of Streptococcus pneumoniae facilitates the acquisition of host polyunsaturated fatty acids. Journal of Biological Chemistry, 2019, 294, 16416-16428.	1.6	32
105	Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (Fabl) Antibiotics. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a027045.	2.9	31
106	Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in <i>Staphylococcus aureus</i> . MBio, 2017, 8, .	1.8	31
107	Domain Swapping between Enterococcus faecalis FabN and FabZ Proteins Localizes the Structural Determinants for Isomerase Activity. Journal of Biological Chemistry, 2005, 280, 30342-30348.	1.6	30
108	Perturbation of Staphylococcus aureus Gene Expression by the Enoyl-Acyl Carrier Protein Reductase Inhibitor AFN-1252. Antimicrobial Agents and Chemotherapy, 2013, 57, 2182-2190.	1.4	29

#	Article	IF	CITATIONS
109	Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinaemia and modifies global metabolism without affecting insulin resistance. Diabetologia, 2014, 57, 1466-1475.	2.9	29
110	Allosteric Regulation of Mammalian Pantothenate Kinase. Journal of Biological Chemistry, 2016, 291, 22302-22314.	1.6	29
111	Human pantothenate kinase 4 is a pseudoâ€pantothenate kinase. Protein Science, 2019, 28, 1031-1047.	3.1	29
112	Structural modification of acyl carrier protein by butyryl group. Protein Science, 2009, 18, 240-246.	3.1	28
113	DesT Coordinates the Expression of Anaerobic and Aerobic Pathways for Unsaturated Fatty Acid Biosynthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 2010, 192, 280-285.	1.0	28
114	Correction of a genetic deficiency in pantothenate kinase 1 using phosphopantothenate replacement therapy. Molecular Genetics and Metabolism, 2015, 116, 281-288.	0.5	28
115	A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases. Journal of Medicinal Chemistry, 2015, 58, 1563-1568.	2.9	28
116	A Missense Mutation Accounts for the Defect in the Glycerol-3-Phosphate Acyltransferase Expressed in the <i>plsB26</i> Mutant. Journal of Bacteriology, 1999, 181, 1944-1946.	1.0	28
117	Chapter 3 Fatty acid and phospholipid metabolism in prokaryotes. New Comprehensive Biochemistry, 2002, 36, 55-92.	0.1	27
118	Fatty acid and phospholipid metabolism in prokaryotes. , 2008, , 59-96.		26
119	Sonic Hedgehog Activates Phospholipase A2 to Enhance Smoothened Ciliary Translocation. Cell Reports, 2017, 19, 2074-2087.	2.9	26
120	Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site. MBio, 2020, 11, .	1.8	26
121	A thioesterase bypasses the requirement for exogenous fatty acids in the <scp><i>plsX</i></scp> deletion of <scp><i>S</i></scp> <i>treptococcus pneumoniae</i> . Molecular Microbiology, 2015, 96, 28-41.	1.2	25
122	Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins. Journal of Biological Chemistry, 2019, 294, 38-49.	1.6	25
123	A pantothenate kinase-deficient mouse model reveals a gene expression program associated with brain coenzyme a reduction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165663.	1.8	25
124	Role of the pyruvate metabolic network on carbohydrate metabolism and virulence in <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 2020, 114, 536-552.	1.2	24
125	Branched-chain amino acid metabolism controls membrane phospholipid structure in Staphylococcus aureus. Journal of Biological Chemistry, 2021, 297, 101255.	1.6	23
126	Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family. Journal of Biological Chemistry, 2016, 291, 6292-6303.	1.6	22

#	Article	IF	CITATIONS
127	Enoyl-Acyl Carrier Protein Reductase I (Fabl) Is Essential for the Intracellular Growth of Listeria monocytogenes. Infection and Immunity, 2016, 84, 3597-3607.	1.0	21
128	Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass Fabl Inhibition in Neisseria. Journal of Biological Chemistry, 2016, 291, 171-181.	1.6	21
129	Acyl-sulfamates target the essential glycerol-phosphate acyltransferase (PlsY) in Gram-positive bacteria. Bioorganic and Medicinal Chemistry, 2012, 20, 4985-4994.	1.4	17
130	FabH Mutations Confer Resistance to FabF-Directed Antibiotics in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2015, 59, 849-858.	1.4	17
131	Disruption of Glycolysis by Nutritional Immunity Activates a Two-Component System That Coordinates a Metabolic and Antihost Response by Staphylococcus aureus. MBio, 2019, 10, .	1.8	17
132	Structure and mechanism of Staphylococcus aureus oleate hydratase (OhyA). Journal of Biological Chemistry, 2021, 296, 100252.	1.6	17
133	Chemical Exchanges between Multilateral Symbionts. Organic Letters, 2021, 23, 1648-1652.	2.4	16
134	Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis in Proteobacteria. Journal of Biological Chemistry, 2021, 297, 101434.	1.6	15
135	The identification, analysis and structure-based development of novel inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. Bioorganic and Medicinal Chemistry, 2014, 22, 2157-2165.	1.4	14
136	Fatty Acid and Phospholipid Biosynthesis in Prokaryotes. , 2016, , 73-112.		14
137	Opening a New Path to Lipoic Acid. Journal of Bacteriology, 2009, 191, 6782-6784.	1.0	13
138	Phosphatidylglycerol homeostasis in glycerol-phosphate auxotrophs of Staphylococcus aureus. BMC Microbiology, 2013, 13, 260.	1.3	13
139	Discovery of Bacterial Fatty Acid Synthase Type II Inhibitors Using a Novel Cellular Bioluminescent Reporter Assay. Antimicrobial Agents and Chemotherapy, 2015, 59, 5775-5787.	1.4	13
140	Phosphatidylcholine signaling in response to CSF-1. Molecular Reproduction and Development, 1997, 46, 24-30.	1.0	12
141	Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2. Molecular Genetics and Metabolism, 2017, 120, 350-362.	0.5	12
142	Pantothenate kinase activation relieves coenzyme A sequestration and improves mitochondrial function in mice with propionic acidemia. Science Translational Medicine, 2021, 13, eabf5965.	5.8	12
143	A genome-wide atlas of antibiotic susceptibility targets and pathways to tolerance. Nature Communications, 2022, 13, .	5.8	12
144	[13] 2-Acylglycerophosphoethanolamine acyltransferase/ acyl-[acyl-carrier-protein] synthetase from Escherichia coli. Methods in Enzymology, 1992, 209, 111-117.	0.4	10

#	Article	IF	CITATIONS
145	Molecular Determinants for Interfacial Binding and Conformational Change in a Soluble Diacylglycerol Kinase. Journal of Biological Chemistry, 2009, 284, 7246-7254.	1.6	9
146	Discovery of novel bacterial elongation condensing enzyme inhibitors by virtual screening. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2585-2588.	1.0	9
147	Mining Fatty Acid Biosynthesis for New Antimicrobials. Annual Review of Microbiology, 2022, 76, 281-304.	2.9	9
148	Competence-Associated Peptide BriC Alters Fatty Acid Biosynthesis in Streptococcus pneumoniae. MSphere, 2021, 6, e0014521.	1.3	8
149	A rainbow coalition of lipid transcriptional regulators. Molecular Microbiology, 2010, 78, 5-8.	1.2	8
150	Oleate Hydratase (OhyA) Is a Virulence Determinant in Staphylococcus aureus. Microbiology Spectrum, 2021, 9, e0154621.	1.2	8
151	Quantification of Coenzyme A in Cells and Tissues. Journal of Visualized Experiments, 2019, , .	0.2	7
152	The genome of a Bacteroidetes inhabitant of the human gut encodes a structurally distinct enoyl-acyl carrier protein reductase (Fabl). Journal of Biological Chemistry, 2020, 295, 7635-7652.	1.6	7
153	Identification of Structural transitions in bacterial fatty acid binding proteins that permit ligand entry and exit at membranes. Journal of Biological Chemistry, 2022, , 101676.	1.6	7
154	Transformation by the v-fms oncogene product: An analog of the CSF-1 receptor. Journal of Cellular Biochemistry, 1987, 33, 109-115.	1.2	6
155	Domain architecture and catalysis of the Staphylococcus aureus fatty acid kinase. Journal of Biological Chemistry, 2022, 298, 101993.	1.6	6
156	Therapeutic Targets in Chlamydial Fatty Acid and Phospholipid Synthesis. Frontiers in Microbiology, 2018, 9, 2291.	1.5	5
157	A rainbow coalition of lipid transcriptional regulators. Molecular Microbiology, 2010, 78, 5-8.	1.2	4
158	Biochemical characterization of the first step in sulfonolipid biosynthesis in Alistipes finegoldii. Journal of Biological Chemistry, 2022, 298, 102195.	1.6	4
159	LipE guided discovery of isopropylphenyl pyridazines as pantothenate kinase modulators. Bioorganic and Medicinal Chemistry, 2021, 52, 116504.	1.4	3
160	Proton magnetic resonance spectroscopy detects cerebral metabolic derangement in a mouse model of brain coenzyme a deficiency. Journal of Translational Medicine, 2022, 20, 103.	1.8	3
161	Membrane Formation and Regulation. , 2019, , 763-773.		1
162	Membrane Formation and Regulation. , 2016, , 1-11.		1

10

#	Article	IF	CITATIONS
163	Structure and mechanism of <i>Staphylococcus aureus</i> oleate hydratase (OhyA). FASEB Journal, 2021, 35, .	0.2	0
164	Initiation of Fatty Acid Synthesis by a Malonylâ \in ACP Decarboxylase. FASEB Journal, 2021, 35, .	0.2	0
165	Fatty acid and phospholipid biosynthesis in prokaryotes. , 2021, , 85-120.		0
166	Inhibitition of Bacterial Fatty Acid Synthesis via the Inactivation of Acyl Carrier Protein. FASEB Journal, 2006, 20, A849.	0.2	0
167	Discovery of Aerobic Mechanisms for the Formation of Unsaturated Fatty Acids in Pseudomonas aeruginosa. FASEB Journal, 2006, 20, A947.	0.2	0
168	Regulation of fatty acid composition of Escherichia coli membrane by FabA and FabZ. FASEB Journal, 2006, 20, A946.	0.2	0
169	A transcription factor that senses fatty acid structure. FASEB Journal, 2008, 22, 803.4.	0.2	0
170	RhlA diverts fatty acid biosynthetic intermediates to rhamnolipid formation. FASEB Journal, 2008, 22, 643.6.	0.2	0
171	Pseudomonas aeruginosa motility requires condensing enzyme FabF1. FASEB Journal, 2009, 23, 520.3.	0.2	0
172	Pank1 plays an important role in coenzyme A homeostasis during fasting. FASEB Journal, 2009, 23, 520.2.	0.2	0
173	Lipogenesis by reductive carboxylation is regulated by Bcrâ€Abl signaling. FASEB Journal, 2012, 26, 786.1.	0.2	0
174	Alternate fatty acid synthesis initiation in Escherichia coli. FASEB Journal, 2020, 34, 1-1.	0.2	0
175	Structure of cysteate acyltransferase, the condensation enzyme that initiates sulfonolipid biosynthesis by inhabitants of the gut microbiome. FASEB Journal, 2022, 36, .	0.2	0
176	Amino Acid Metabolism Controls Fatty Acid Structure in <i>Staphylococcus aureus</i> . FASEB Journal, 2022, 36, .	0.2	0