
## Laleh Majlessi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1748199/publications.pdf Version: 2024-02-01



LALEH MALLESSI

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An intranasal lentiviral booster reinforces the waning mRNA vaccine-induced SARS-CoV-2 immunity that it targets to lung mucosa. Molecular Therapy, 2022, 30, 2984-2997.                                    | 3.7  | 17        |
| 2  | Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host and Microbe, 2021, 29, 236-249.e6.                                                     | 5.1  | 107       |
| 3  | Lentiviral vector induces high-quality memory T cells via dendritic cells transduction.<br>Communications Biology, 2021, 4, 713.                                                                           | 2.0  | 17        |
| 4  | Brain crossâ€protection against SARSâ€CoVâ€2 variants by a lentiviral vaccine in new transgenic mice. EMBO<br>Molecular Medicine, 2021, 13, e14459.                                                        | 3.3  | 25        |
| 5  | Use of lentiviral vectors in vaccination. Expert Review of Vaccines, 2021, 20, 1571-1586.                                                                                                                  | 2.0  | 16        |
| 6  | Intrinsic Antibacterial Activity of Nanoparticles Made of β-Cyclodextrins Potentiates Their Effect as<br>Drug Nanocarriers against Tuberculosis. ACS Nano, 2019, 13, 3992-4007.                            | 7.3  | 42        |
| 7  | Compartmentalized Encapsulation of Two Antibiotics in Porous Nanoparticles: an Efficient Strategy<br>to Treat Intracellular Infections. Particle and Particle Systems Characterization, 2019, 36, 1800360. | 1.2  | 24        |
| 8  | Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors.<br>Cell Reports, 2018, 23, 1072-1084.                                                                    | 2.9  | 28        |
| 9  | Unexpected Genomic and Phenotypic Diversity of Mycobacterium africanum Lineage 5 Affects Drug<br>Resistance, Protein Secretion, and Immunogenicity. Genome Biology and Evolution, 2018, 10, 1858-1874.     | 1.1  | 47        |
| 10 | RD5-mediated lack of PE_PGRS and PPE-MPTR export in BCG vaccine strains results in strong reduction of antigenic repertoire but little impact on protection. PLoS Pathogens, 2018, 14, e1007139.           | 2.1  | 36        |
| 11 | Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic<br>Immune Signaling and Improved TB Protection. Cell Reports, 2017, 18, 2752-2765.                         | 2.9  | 98        |
| 12 | Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Scientific Reports, 2017, 7, 5390.                                            | 1.6  | 74        |
| 13 | CD4+ T Cells Recognizing PE/PPE Antigens Directly or via Cross Reactivity Are Protective against<br>Pulmonary Mycobacterium tuberculosis Infection. PLoS Pathogens, 2016, 12, e1005770.                    | 2.1  | 50        |
| 14 | Perspectives on mycobacterial vacuole-to-cytosol translocation: the importance of cytosolic access.<br>Cellular Microbiology, 2016, 18, 1070-1077.                                                         | 1.1  | 26        |
| 15 | ESX secretion systems: mycobacterial evolution to counter host immunity. Nature Reviews<br>Microbiology, 2016, 14, 677-691.                                                                                | 13.6 | 306       |
| 16 | Release of mycobacterial antigens. Immunological Reviews, 2015, 264, 25-45.                                                                                                                                | 2.8  | 77        |
| 17 | Ecto-5′-Nucleotidase (CD73) Deficiency in Mycobacterium tuberculosis-Infected Mice Enhances<br>Neutrophil Recruitment. Infection and Immunity, 2015, 83, 3666-3674.                                        | 1.0  | 14        |
| 18 | Strong Immunogenicity and Cross-Reactivity of Mycobacterium tuberculosis ESX-5 Type VII Secretion<br>-Encoded PE-PPE Proteins Predicts Vaccine Potential. Cell Host and Microbe, 2012, 11, 352-363.        | 5.1  | 102       |

LALEH MAJLESSI

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Disruption of the ESXâ€5 system of <i>Mycobacterium tuberculosis</i> causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Molecular Microbiology, 2012, 83, 1195-1209.                                                                  | 1.2  | 178       |
| 20 | Control of M. tuberculosis ESAT-6 Secretion and Specific T Cell Recognition by PhoP. PLoS Pathogens, 2008, 4, e33.                                                                                                                                                                | 2.1  | 234       |
| 21 | An Increase in Antimycobacterial Th1-Cell Responses by Prime-Boost Protocols of Immunization Does<br>Not Enhance Protection against Tuberculosis. Infection and Immunity, 2006, 74, 2128-2137.                                                                                    | 1.0  | 93        |
| 22 | High Frequency of CD4+ T Cells Specific for the TB10.4 Protein Correlates with Protection against<br>Mycobacterium tuberculosis Infection. Infection and Immunity, 2006, 74, 3396-3407.                                                                                           | 1.0  | 86        |
| 23 | Dissection of ESAT-6 System 1 of Mycobacterium tuberculosis and Impact on Immunogenicity and Virulence. Infection and Immunity, 2006, 74, 88-98.                                                                                                                                  | 1.0  | 279       |
| 24 | Functional Analysis of Early Secreted Antigenic Target-6, the Dominant T-cell Antigen of<br>Mycobacterium tuberculosis, Reveals Key Residues Involved in Secretion, Complex Formation,<br>Virulence, and Immunogenicity. Journal of Biological Chemistry, 2005, 280, 33953-33959. | 1.6  | 133       |
| 25 | Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nature Medicine, 2003, 9, 533-539.                                                                                                                                                             | 15.2 | 571       |
| 26 | CD8 + -T-CellResponses of Mycobacterium-Infected Mice to a Newly Identified MajorHistocompatibility<br>Complex Class I-Restricted Epitope Shared byProteins of the ESAT-6Family. Infection and Immunity, 2003,<br>71, 7173-7177.                                                  | 1.0  | 52        |