Karyn N Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1747958/publications.pdf

Version: 2024-02-01

62 5,368 papers citations

5,368 28 62
citations h-index g-index

65 65 does citations

65 times ranked 4499 citing authors

#	Article	IF	CITATIONS
1	Physical and Chemical Barriers in the Larval Midgut Confer Developmental Resistance to Virus Infection in Drosophila. Viruses, 2021, 13, 894.	3.3	4
2	A new dicistro-like virus from soldier fly, Inopus flavus (Diptera: Stratiomyidae), a pest of sugarcane. Archives of Virology, 2021, 166, 2841-2846.	2.1	0
3	miRNA Modulation of Insect Virus Replication. Current Issues in Molecular Biology, 2020, 34, 61-82.	2.4	6
4	Contrasting Patterns of Virus Protection and Functional Incompatibility Genes in Two Conspecific <i>Wolbachia</i> Strains from <i>Drosophila pandora</i> Applied and Environmental Microbiology, 2019, 85, .	3.1	10
5	<i>Drosophila melanogaster</i> infected with <i>Wolbachia</i> strain <i>w</i> MelCS prefer cooler temperatures. Ecological Entomology, 2019, 44, 287-290.	2.2	27
6	Wolbachia-mediated antiviral protection is cell-autonomous. Journal of General Virology, 2019, 100, 1587-1592.	2.9	15
7	The taxonomy of an Australian nodavirus isolated from mosquitoes. PLoS ONE, 2018, 13, e0210029.	2.5	13
8	miRNAs in Insects Infected by Animal and Plant Viruses. Viruses, 2018, 10, 354.	3.3	13
9	Wolbachia-mediated protection of Drosophila melanogaster against systemic infection with its natural viral pathogen Drosophila C virus does not involve changes in levels of highly abundant miRNAs. Journal of General Virology, 2018, 99, 827-831.	2.9	15
10	Drosophila miR-956 suppression modulates Ectoderm-expressed 4 and inhibits viral replication. Virology, 2017, 502, 20-27.	2.4	27
11	Drosophila microRNA modulates viral replication by targeting a homologue of mammalian cJun. Journal of General Virology, 2017, 98, 1904-1912.	2.9	11
12	Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions. Viruses, 2016, 8, 303.	3.3	161
13	Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology, 2016, 490, 27-40.	2.4	28
14	Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology, 2016, 489, 20-33.	2.4	32
15	Impact of ERK activation on fly survival and Wolbachia-mediated protection during virus infection. Journal of General Virology, 2016, 97, 1446-1452.	2.9	20
16	The Impact of Wolbachia on Virus Infection in Mosquitoes. Viruses, 2015, 7, 5705-5717.	3.3	117
17	Oxidative Stress Correlates with Wolbachia-Mediated Antiviral Protection in Wolbachia-Drosophila Associations. Applied and Environmental Microbiology, 2015, 81, 3001-3005.	3.1	68
18	Bacteria and antiviral immunity in insects. Current Opinion in Insect Science, 2015, 8, 97-103.	4.4	27

#	Article	IF	Citations
19	Infectivity of Drosophila C virus following oral delivery in Drosophila larvae. Journal of General Virology, 2015, 96, 1490-1496.	2.9	24
20	Cytorhabdovirus phosphoprotein shows RNA silencing suppressor activity in plants, but not in insect cells. Virology, 2015, 476, 413-418.	2.4	24
21	Wolbachia-Mediated Antiviral Protection in Drosophila Larvae and Adults following Oral Infection. Applied and Environmental Microbiology, 2015, 81, 8215-8223.	3.1	23
22	A Novel Pathway of Cell Death in Response to Cytosolic DNA in <i>Drosophila</i> Cells. Journal of Innate Immunity, 2015, 7, 212-222.	3.8	6
23	Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus. Journal of General Virology, 2015, 96, 3667-3671.	2.9	7
24	Physiological and metabolic consequences of viral infection in <i>Drosophila melanogaster</i> Journal of Experimental Biology, 2013, 216, 3350-7.	1.7	76
25	Antiviral immunity and protection in penaeid shrimp. Invertebrate Immunity, 2013, 1, .	0.0	1
26	Dietary Cholesterol Modulates Pathogen Blocking by Wolbachia. PLoS Pathogens, 2013, 9, e1003459.	4.7	232
27	Antiviral Protection and the Importance of Wolbachia Density and Tissue Tropism in Drosophila simulans. Applied and Environmental Microbiology, 2012, 78, 6922-6929.	3.1	191
28	The Small Interfering RNA Pathway Is Not Essential for Wolbachia-Mediated Antiviral Protection in Drosophila melanogaster. Applied and Environmental Microbiology, 2012, 78, 6773-6776.	3.1	34
29	Genetic analysis of <scp>B</scp> lack <scp>T</scp> iger shrimp (<i><scp>P</scp>enaeus monodon)</i> across its natural distribution range reveals more recent colonization of <scp>F</scp> iji and other <scp>S</scp> outh <scp>P</scp> acific islands. Ecology and Evolution, 2012, 2, 2057-2071.	1.9	38
30	Wolbachia-Mediated Antibacterial Protection and Immune Gene Regulation in Drosophila. PLoS ONE, 2011, 6, e25430.	2.5	129
31	Solving the <i>Wolbachia </i> Paradox: Modeling the Tripartite Interaction between Host, <i>Wolbachia </i> , and a Natural Enemy. American Naturalist, 2011, 178, 333-342.	2.1	83
32	Ectopic expression of an endoparasitic wasp venom protein in <i>Drosophila melanogaster</i> affects immune function, larval development and oviposition. Insect Molecular Biology, 2010, 19, 473-480.	2.0	2
33	Gill-associated virus and recombinant protein vaccination in Penaeus monodon. Aquaculture, 2010, 308, 82-88.	3.5	9
34	Variation in Antiviral Protection Mediated by Different Wolbachia Strains in Drosophila simulans. PLoS Pathogens, 2009, 5, e1000656.	4.7	295
35	Drosophila A virus is an unusual RNA virus with a T=3 icosahedral core and permuted RNA-dependent RNA polymerase. Journal of General Virology, 2009, 90, 2191-2200.	2.9	25
36	Symbiont-mediated protection in insect hosts. Trends in Microbiology, 2009, 17, 348-354.	7.7	296

3

#	Article	IF	CITATIONS
37	A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell, 2009, 139, 1268-1278.	28.9	1,384
38	Genetic variability of genome segments 3 and 9 of Fiji disease virus field isolates. Archives of Virology, 2008, 153, 839-848.	2.1	5
39	<i>Wolbachia</i> and Virus Protection in Insects. Science, 2008, 322, 702-702.	12.6	977
40	"Vaccination―of shrimp against viral pathogens: Phenomenology and underlying mechanisms. Vaccine, 2008, 26, 4885-4892.	3.8	97
41	Induction of host defence responses by Drosophila C virus. Journal of General Virology, 2008, 89, 1497-1501.	2.9	71
42	Variation in Acquisition of Fiji Disease Virus by <l>Perkinsiella saccharicida</l> (Hemiptera:) Tj ETQq0 (0 o _{rg} BT /0	Overlock 10 T
43	In Vitro Rearing of Perkinsiella saccharicida and the Use of Leaf Segments to Assay Fiji disease virus Transmission. Phytopathology, 2008, 98, 810-814.	2.2	5
44	Variation in Acquisition of Fiji Disease Virus by Perkinsiella saccharicida (Hemiptera: Delphacidae). Journal of Economic Entomology, 2008, 101, 17-22.	1.8	5
45	Is the distribution of Fiji leaf gall in Australian sugarcane explained by variation in the vectorPerkinsiella saccharicida?. Australasian Plant Pathology, 2006, 35, 103.	1.0	8
46	Heterologous RNA Encapsidated in Pariacoto Virus-Like Particles Forms a Dodecahedral Cage Similar to Genomic RNA in Wild-Type Virions. Journal of Virology, 2004, 78, 11371-11378.	3.4	34
47	Providence virus: a new member of the tetraviridae that infects cultured insect cells. Virology, 2003, 306, 359-370.	2.4	45
48	Production of a Monoclonal Antibody to Sugarcane mosaic virus and its Application for Virus Detection in China. Journal of Phytopathology, 2003, 151, 361-364.	1.0	14
49	Virions of Pariacoto virus contain a minor protein translated from the second AUG codon of the capsid protein open reading frame. Journal of General Virology, 2003, 84, 2847-2852.	2.9	7
50	The structure of pariacoto virus reveals a dodecahedral cage of duplex RNA. Nature Structural Biology, 2001, 8, 77-83.	9.7	157
51	Recovery of Infectious Pariacoto Virus from cDNA Clones and Identification of Susceptible Cell Lines. Journal of Virology, 2001, 75, 12220-12227.	3.4	15
52	Comparisons among the larger genome segments of six nodaviruses and their encoded RNA replicases. Journal of General Virology, 2001, 82, 1855-1866.	2.9	55
53	Comparisons among the larger genome segments of six nodaviruses and their encoded RNA replicases. Journal of General Virology, 2001, 82, 3119-3119.	2.9	3
54	Characterization and Construction of Functional cDNA Clones of Pariacoto Virus, the First Alphanodavirus Isolated outside Australasia. Journal of Virology, 2000, 74, 5123-5132.	3.4	73

#	Article	IF	CITATIONS
55	Reverse Transcription of a Naturally Occurring Nonretroviral RNA Produces a Precise Deletion in the Majority of Its cDNA Products. IUBMB Life, 2000, 49, 223-227.	3.4	1
56	Characterization and Construction of Functional cDNA Clones of Pariacoto Virus, the First Alphanodavirus Isolated outside Australasia. Journal of Virology, 2000, 74, 5123-5132.	3.4	7
57	Molecular Characterization ofDrosophilaC Virus Isolates. Journal of Invertebrate Pathology, 1999, 73, 248-254.	3.2	36
58	The novel genome organization of the insect picorna-like virus Drosophila C virus suggests this virus belongs to a previously undescribed virus family Journal of General Virology, 1998, 79, 191-203.	2.9	143
59	A molecular taxonomy for cricket paralysis virus including two new isolates from Australian populations of Drosophila (Diptera: Drosophilidae). Archives of Virology, 1996, 141, 1509-1522.	2.1	19
60	Thehermit transposable element of the Australian sheep blowfly, Lucilia cuprina, belongs to the hAT family of transposable elements. Genetica, 1996, 97, 23-31.	1.1	34
61	The Larger Genomic RNA of Helicoverpa armigera Stunt Tetravirus Encodes the Viral RNA Polymerase and Has a Novel 3′-Terminal tRNA-like Structure. Virology, 1995, 208, 84-98.	2.4	36
62	Sequence of RNA2 of the Helicoverpa armigera stunt virus (Tetraviridae) and bacterial expression of its genes. Journal of General Virology, 1995, 76, 799-811.	2.9	35