Karyn N Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1747958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell, 2009, 139, 1268-1278.	28.9	1,384
2	<i>Wolbachia</i> and Virus Protection in Insects. Science, 2008, 322, 702-702.	12.6	977
3	Symbiont-mediated protection in insect hosts. Trends in Microbiology, 2009, 17, 348-354.	7.7	296
4	Variation in Antiviral Protection Mediated by Different Wolbachia Strains in Drosophila simulans. PLoS Pathogens, 2009, 5, e1000656.	4.7	295
5	Dietary Cholesterol Modulates Pathogen Blocking by Wolbachia. PLoS Pathogens, 2013, 9, e1003459.	4.7	232
6	Antiviral Protection and the Importance of Wolbachia Density and Tissue Tropism in Drosophila simulans. Applied and Environmental Microbiology, 2012, 78, 6922-6929.	3.1	191
7	Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions. Viruses, 2016, 8, 303.	3.3	161
8	The structure of pariacoto virus reveals a dodecahedral cage of duplex RNA. Nature Structural Biology, 2001, 8, 77-83.	9.7	157
9	The novel genome organization of the insect picorna-like virus Drosophila C virus suggests this virus belongs to a previously undescribed virus family Journal of General Virology, 1998, 79, 191-203.	2.9	143
10	Wolbachia-Mediated Antibacterial Protection and Immune Gene Regulation in Drosophila. PLoS ONE, 2011, 6, e25430.	2.5	129
11	The Impact of Wolbachia on Virus Infection in Mosquitoes. Viruses, 2015, 7, 5705-5717.	3.3	117
12	"Vaccination―of shrimp against viral pathogens: Phenomenology and underlying mechanisms. Vaccine, 2008, 26, 4885-4892.	3.8	97
13	Solving the <i>Wolbachia</i> Paradox: Modeling the Tripartite Interaction between Host, <i>Wolbachia</i> , and a Natural Enemy. American Naturalist, 2011, 178, 333-342.	2.1	83
14	Physiological and metabolic consequences of viral infection in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2013, 216, 3350-7.	1.7	76
15	Characterization and Construction of Functional cDNA Clones of Pariacoto Virus, the First Alphanodavirus Isolated outside Australasia. Journal of Virology, 2000, 74, 5123-5132.	3.4	73
16	Induction of host defence responses by Drosophila C virus. Journal of General Virology, 2008, 89, 1497-1501.	2.9	71
17	Oxidative Stress Correlates with Wolbachia-Mediated Antiviral Protection in Wolbachia-Drosophila Associations. Applied and Environmental Microbiology, 2015, 81, 3001-3005.	3.1	68
18	Comparisons among the larger genome segments of six nodaviruses and their encoded RNA replicases. Journal of General Virology, 2001, 82, 1855-1866.	2.9	55

Karyn N Johnson

#	Article	IF	CITATIONS
19	Providence virus: a new member of the tetraviridae that infects cultured insect cells. Virology, 2003, 306, 359-370.	2.4	45
20	Genetic analysis of <scp>B</scp> lack <scp>T</scp> iger shrimp (<i><scp>P</scp>enaeus monodon)</i> across its natural distribution range reveals more recent colonization of <scp>F</scp> iji and other <scp>S</scp> outh <scp>P</scp> acific islands. Ecology and Evolution, 2012, 2, 2057-2071.	1.9	38
21	The Larger Genomic RNA of Helicoverpa armigera Stunt Tetravirus Encodes the Viral RNA Polymerase and Has a Novel 3′-Terminal tRNA-like Structure. Virology, 1995, 208, 84-98.	2.4	36
22	Molecular Characterization ofDrosophilaC Virus Isolates. Journal of Invertebrate Pathology, 1999, 73, 248-254.	3.2	36
23	Sequence of RNA2 of the Helicoverpa armigera stunt virus (Tetraviridae) and bacterial expression of its genes. Journal of General Virology, 1995, 76, 799-811.	2.9	35
24	Thehermit transposable element of the Australian sheep blowfly,Lucilia cuprina, belongs to thehAT family of transposable elements. Genetica, 1996, 97, 23-31.	1.1	34
25	Heterologous RNA Encapsidated in Pariacoto Virus-Like Particles Forms a Dodecahedral Cage Similar to Genomic RNA in Wild-Type Virions. Journal of Virology, 2004, 78, 11371-11378.	3.4	34
26	The Small Interfering RNA Pathway Is Not Essential for Wolbachia-Mediated Antiviral Protection in Drosophila melanogaster. Applied and Environmental Microbiology, 2012, 78, 6773-6776.	3.1	34
27	Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology, 2016, 489, 20-33.	2.4	32
28	Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology, 2016, 490, 27-40.	2.4	28
29	Bacteria and antiviral immunity in insects. Current Opinion in Insect Science, 2015, 8, 97-103.	4.4	27
30	Drosophila miR-956 suppression modulates Ectoderm-expressed 4 and inhibits viral replication. Virology, 2017, 502, 20-27.	2.4	27
31	<i>Drosophila melanogaster</i> infected with <i>Wolbachia</i> strain <i>w</i> MelCS prefer cooler temperatures. Ecological Entomology, 2019, 44, 287-290.	2.2	27
32	Drosophila A virus is an unusual RNA virus with a T=3 icosahedral core and permuted RNA-dependent RNA polymerase. Journal of General Virology, 2009, 90, 2191-2200.	2.9	25
33	Infectivity of Drosophila C virus following oral delivery in Drosophila larvae. Journal of General Virology, 2015, 96, 1490-1496.	2.9	24
34	Cytorhabdovirus phosphoprotein shows RNA silencing suppressor activity in plants, but not in insect cells. Virology, 2015, 476, 413-418.	2.4	24
35	Wolbachia-Mediated Antiviral Protection in Drosophila Larvae and Adults following Oral Infection. Applied and Environmental Microbiology, 2015, 81, 8215-8223.	3.1	23
36	Impact of ERK activation on fly survival and Wolbachia-mediated protection during virus infection. Journal of General Virology, 2016, 97, 1446-1452.	2.9	20

Karyn N Johnson

#	Article	IF	CITATIONS
37	A molecular taxonomy for cricket paralysis virus including two new isolates from Australian populations ofDrosophila (Diptera: Drosophilidae). Archives of Virology, 1996, 141, 1509-1522.	2.1	19
38	Recovery of Infectious Pariacoto Virus from cDNA Clones and Identification of Susceptible Cell Lines. Journal of Virology, 2001, 75, 12220-12227.	3.4	15
39	Wolbachia-mediated protection of Drosophila melanogaster against systemic infection with its natural viral pathogen Drosophila C virus does not involve changes in levels of highly abundant miRNAs. Journal of General Virology, 2018, 99, 827-831.	2.9	15
40	Wolbachia-mediated antiviral protection is cell-autonomous. Journal of General Virology, 2019, 100, 1587-1592.	2.9	15
41	Production of a Monoclonal Antibody to Sugarcane mosaic virus and its Application for Virus Detection in China. Journal of Phytopathology, 2003, 151, 361-364.	1.0	14
42	The taxonomy of an Australian nodavirus isolated from mosquitoes. PLoS ONE, 2018, 13, e0210029.	2.5	13
43	miRNAs in Insects Infected by Animal and Plant Viruses. Viruses, 2018, 10, 354.	3.3	13
44	Drosophila microRNA modulates viral replication by targeting a homologue of mammalian cJun. Journal of General Virology, 2017, 98, 1904-1912.	2.9	11
45	Contrasting Patterns of Virus Protection and Functional Incompatibility Genes in Two Conspecific <i>Wolbachia</i> Strains from <i>Drosophila pandora</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	10
46	Gill-associated virus and recombinant protein vaccination in Penaeus monodon. Aquaculture, 2010, 308, 82-88.	3.5	9
47	Is the distribution of Fiji leaf gall in Australian sugarcane explained by variation in the vectorPerkinsiella saccharicida?. Australasian Plant Pathology, 2006, 35, 103.	1.0	8
48	Virions of Pariacoto virus contain a minor protein translated from the second AUG codon of the capsid protein open reading frame. Journal of General Virology, 2003, 84, 2847-2852.	2.9	7
49	Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus. Journal of General Virology, 2015, 96, 3667-3671.	2.9	7
50	Characterization and Construction of Functional cDNA Clones of Pariacoto Virus, the First Alphanodavirus Isolated outside Australasia. Journal of Virology, 2000, 74, 5123-5132.	3.4	7
51	A Novel Pathway of Cell Death in Response to Cytosolic DNA in <i>Drosophila</i> Cells. Journal of Innate Immunity, 2015, 7, 212-222.	3.8	6
52	miRNA Modulation of Insect Virus Replication. Current Issues in Molecular Biology, 2020, 34, 61-82.	2.4	6
53	Genetic variability of genome segments 3 and 9 of Fiji disease virus field isolates. Archives of Virology, 2008, 153, 839-848.	2.1	5
54	In Vitro Rearing of Perkinsiella saccharicida and the Use of Leaf Segments to Assay Fiji disease virus Transmission. Phytopathology, 2008, 98, 810-814.	2.2	5

#	Article	IF	CITATIONS
55	Variation in Acquisition of Fiji Disease Virus by Perkinsiella saccharicida (Hemiptera: Delphacidae). Journal of Economic Entomology, 2008, 101, 17-22.	1.8	5

56 Variation in Acquisition of Fiji Disease Virus by <1>Perkinsiella saccharicida</1> (Hemiptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

57	Physical and Chemical Barriers in the Larval Midgut Confer Developmental Resistance to Virus Infection in Drosophila. Viruses, 2021, 13, 894.	3.3	4
58	Comparisons among the larger genome segments of six nodaviruses and their encoded RNA replicases. Journal of General Virology, 2001, 82, 3119-3119.	2.9	3
59	Ectopic expression of an endoparasitic wasp venom protein in <i>Drosophila melanogaster</i> affects immune function, larval development and oviposition. Insect Molecular Biology, 2010, 19, 473-480.	2.0	2
60	Reverse Transcription of a Naturally Occurring Nonretroviral RNA Produces a Precise Deletion in the Majority of Its cDNA Products. IUBMB Life, 2000, 49, 223-227.	3.4	1
61	Antiviral immunity and protection in penaeid shrimp. Invertebrate Immunity, 2013, 1, .	0.0	1
62	A new dicistro-like virus from soldier fly, Inopus flavus (Diptera: Stratiomyidae), a pest of sugarcane. Archives of Virology, 2021, 166, 2841-2846.	2.1	0