Guoxin Tan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1747836/guoxin-tan-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,256 17 32 35 h-index g-index citations papers 1,796 36 4.55 9.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
32	Tough and Highly Efficient Underwater Self-Repairing Hydrogels for Soft Electronics <i>Small Methods</i> , 2022 , e2101513	12.8	5
31	Wireless electrical stimulation at the nanoscale interface induces tumor vascular normalization <i>Bioactive Materials</i> , 2022 , 18, 399-408	16.7	5
30	Injectable Self-Healing Natural Biopolymer-Based Hydrogel Adhesive with Thermoresponsive Reversible Adhesion for Minimally Invasive Surgery. <i>Advanced Functional Materials</i> , 2021 , 31, 2007457	15.6	54
29	Wearable sensors and devices for real-time cardiovascular disease monitoring. <i>Cell Reports Physical Science</i> , 2021 , 2, 100541	6.1	11
28	Ultrafast and On-Demand Oil/Water Separation Membrane System Based on Conducting Polymer Nanotip Arrays. <i>Nano Letters</i> , 2020 , 20, 4895-4900	11.5	15
27	Wireless Electrochemotherapy by Selenium-Doped Piezoelectric Biomaterials to Enhance Cancer Cell Apoptosis. <i>ACS Applied Materials & Acs Applied & Acs App</i>	9.5	11
26	Endogenous electric field as a bridge for antibacterial ion transport from implant to bacteria. <i>Science China Materials</i> , 2020 , 63, 1831-1841	7.1	3
25	Elastomeric conductive hybrid hydrogels with continuous conductive networks. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 2389-2397	7.3	26
24	Nanomaterials as photothermal therapeutic agents. <i>Progress in Materials Science</i> , 2019 , 99, 1-26	42.2	234
23	Polypyrrole Nanocones and Dynamic Piezoelectric Stimulation-Induced Stem Cell Osteogenic Differentiation. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 4386-4392	5.5	15
22	A spatially varying charge model for regulating site-selective protein adsorption and cell behaviors. <i>Biomaterials Science</i> , 2019 , 7, 876-888	7.4	9
21	A Tough and Self-Powered Hydrogel for Artificial Skin. <i>Chemistry of Materials</i> , 2019 , 31, 9850-9860	9.6	56
20	Antimicrobial Peptide Functionalized Conductive Nanowire Array Electrode as a Promising Candidate for Bacterial Environment Application. <i>Advanced Functional Materials</i> , 2019 , 29, 1806353	15.6	8
19	The antibacterial effect of potassium-sodium niobate ceramics based on controlling piezoelectric properties. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 175, 463-468	6	23
18	Tunable Mechanical, Antibacterial, and Cytocompatible Hydrogels Based on a Functionalized Dual Network of Metal Coordination Bonds and Covalent Crosslinking. <i>ACS Applied Materials & Comp; Interfaces</i> , 2018 , 10, 6190-6198	9.5	35
17	A Multifunctional Metallohydrogel with Injectability, Self-Healing, and Multistimulus-Responsiveness for Bioadhesives. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1800305	3.9	10
16	Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 10, 17	7 4 2 ⁵ -17	783

LIST OF PUBLICATIONS

15	Electroactive polymers for tissue regeneration: Developments and perspectives. <i>Progress in Polymer Science</i> , 2018 , 81, 144-162	29.6	132
14	Soft Conducting Polymer Hydrogels Cross-Linked and Doped by Tannic Acid for Spinal Cord Injury Repair. <i>ACS Nano</i> , 2018 , 12, 10957-10967	16.7	146
13	Polydopamine-Assisted Immobilization of Copper Ions onto Hemodialysis Membranes for Antimicrobial <i>ACS Applied Bio Materials</i> , 2018 , 1, 1236-1243	4.1	5
12	Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration. <i>Theranostics</i> , 2017 , 7, 3387	- <u>33.9</u> 7	44
11	Palladium nanoparticles entrapped in a self-supporting nanoporous gold wire as sensitive dopamine biosensor. <i>Scientific Reports</i> , 2017 , 7, 7941	4.9	27
10	Fabrication of Biocompatible Potassium Sodium Niobate Piezoelectric Ceramic as an Electroactive Implant. <i>Materials</i> , 2017 , 10,	3.5	29
9	Polarization of an electroactive functional film on titanium for inducing osteogenic differentiation. <i>Scientific Reports</i> , 2016 , 6, 35512	4.9	23
8	Built-in microscale electrostatic fields induced by anatase-rutile-phase transition in selective areas promote osteogenesis. <i>NPG Asia Materials</i> , 2016 , 8,	10.3	26
7	Polydopamine-Assisted Electrochemical Fabrication of Polypyrrole Nanofibers on Bone Implants to Improve Bioactivity. <i>Macromolecular Materials and Engineering</i> , 2016 , 301, 1288-1294	3.9	20
6	Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 24306-9	9.5	38
5	Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism. <i>Chemical Research in Toxicology</i> , 2015 , 28, 1815-22	4	127
4	Chondroitin sulphate-guided construction of polypyrrole nanoarchitectures. <i>Materials Science and Engineering C</i> , 2015 , 48, 172-8	8.3	10
3	Reversibly Controlling Preferential Protein Adsorption on Bone Implants by Using an Applied Weak Potential as a Switch. <i>Angewandte Chemie</i> , 2014 , 126, 13284-13288	3.6	7
2	0D/1D Heterojunction Implant with Electro-Mechanobiological Coupling Cues Promotes Osteogenesis. <i>Advanced Functional Materials</i> ,2106249	15.6	7
1	The innovation of biomaterials: From bioactive to bioelectroactive. Science China Materials,1	7.1	2