
Xiaoxia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1747310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unexpected phosphorous removal in a Candidatus_Competibacter and Defluviicoccus dominated reactor. Bioresource Technology, 2022, 345, 126540.	9.6	20
2	Culturing partial denitrification biofilm in side stream incubator with ordinary activated sludge as inoculum: One step closer to mainstream Anammox upgrade. Bioresource Technology, 2022, 347, 126679.	9.6	22
3	A rational construction of TiO2/N-doped Carbon/NiMoO4 composites with multidimensional structure towards strong microwave absorption. Journal of Alloys and Compounds, 2022, 903, 163936.	5.5	9
4	Electrostatic Interaction in Amino Protonated Chitosan–Metal Complex Anion Hydrogels: A Simple Approach to Porous Metal Carbides/N-Doped Carbon Aerogels for Energy Conversion. ACS Applied Materials & Interfaces, 2022, 14, 22151-22160.	8.0	9
5	Development of novel denitrifying nitrite accumulation and phosphorus removal (DNAPR) process for offering an alternative pretreatment to achieve mainstream Anammox. Bioresource Technology, 2021, 319, 124164.	9.6	23
6	Feasibility of reinforced post-endogenous denitrification coupling with synchronous nitritation, denitrification and phosphorus removal for high-nitrate sewage treatment using limited carbon source in municipal wastewater. Chemosphere, 2021, 269, 128687.	8.2	20
7	Comparison of nitrite accumulation performance and microbial community structure in endogenous partial denitrification process with acetate and glucose served as carbon source. Bioresource Technology, 2021, 320, 124405.	9.6	40
8	A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption. Carbon, 2021, 176, 279-289.	10.3	103
9	Achieving simultaneous nitritation, anammox and denitrification (SNAD) in an integrated fixed-biofilm activated sludge (IFAS) reactor: Quickly culturing self-generated anammox bacteria. Science of the Total Environment, 2021, 768, 144446.	8.0	25
10	Microbial analysis and enrichment of anaerobic phenol and <i>p</i> -cresol degrading consortia with addition of AQDS. Water Science and Technology, 2021, 84, 683-696.	2.5	5
11	The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO2 reduction to formate. Chemical Engineering Journal, 2021, 421, 129606.	12.7	42
12	Cation vacancy driven efficient CoFe-LDH-based electrocatalysts for water splitting and Zn–air batteries. Materials Advances, 2021, 2, 7932-7938.	5.4	13
13	Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. Journal of Alloys and Compounds, 2020, 843, 155713.	5.5	50
14	Performance and microbial structure of partial denitrification in response to salt stress: Achieving stable nitrite accumulation with municipal wastewater. Bioresource Technology, 2020, 311, 123559.	9.6	20
15	Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chemical Engineering Journal, 2020, 383, 123095.	12.7	143
16	Achieving deep-level nutrient removal via combined denitrifying phosphorus removal and simultaneous partial nitrification-endogenous denitrification process in a single-sludge sequencing batch reactor. Bioresource Technology, 2019, 289, 121690.	9.6	37
17	Molybdenum Disulfide Quantum Dots Prepared by Bipolar-Electrode Electrochemical Scissoring. Nanomaterials, 2019, 9, 906.	4.1	15
18	Novel aerobic granular sludge culture strategy: Using granular sludge Anammox process effluent as a biocatalyst. Bioresource Technology, 2019, 294, 122156.	9.6	17

XIAOXIA WANG

#	Article	IF	CITATIONS
19	Ni Nanoparticles on Ultrathin Mo2C Interconnected Nanonet: An Efficient 3D Hydrogen-Evolving Electrocatalyst with Superior Durability. Journal of the Electrochemical Society, 2019, 166, F1128-F1133.	2.9	3
20	Evaluating the potential for sustaining mainstream anammox by endogenous partial denitrification and phosphorus removal for energy-efficient wastewater treatment. Bioresource Technology, 2019, 284, 302-314.	9.6	93
21	Facile Preparation of Snowflake‣ike MnO 2 @NiCo 2 O 4 Composites for Highly Efficient Electromagnetic Wave Absorption. Chemistry - A European Journal, 2019, 25, 7695-7701.	3.3	35
22	Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets. Journal of Colloid and Interface Science, 2019, 537, 306-315.	9.4	61
23	Nickelâ€Borate/Reduced Graphene Oxide Nanohybrid: A Robust and Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline and Near Neutral Media. ChemCatChem, 2018, 10, 2826-2832.	3.7	21
24	Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Research, 2018, 11, 988-996.	10.4	236
25	Solvent-regulated preparation of well-intercalated Ti ₃ C ₂ T _x MXene nanosheets and application for highly effective electromagnetic wave absorption. Nanotechnology, 2018, 29, 355201.	2.6	62
26	Direct generation of Ag nanoclusters on reduced graphene oxide nanosheets for efficient catalysis, antibacteria and photothermal anticancer applications. Journal of Colloid and Interface Science, 2018, 529, 444-451.	9.4	40
27	Simultaneous Synthesis of WO _{3â^`} <i>_x</i> Quantum Dots and Bundleâ€Like Nanowires Using a Oneâ€Pot Templateâ€Free Solvothermal Strategy and Their Versatile Applications. Small, 2017, 13, 1603689.	10.0	85
28	Fabrication of porous graphene-Fe 3 O 4 hybrid composites with outstanding microwave absorption performance. Composites Part A: Applied Science and Manufacturing, 2017, 95, 237-247.	7.6	110
29	Wafer-scale fabrication of a Cu/graphene double-nanocap array for surface-enhanced Raman scattering substrates. Chemical Communications, 2017, 53, 3273-3276.	4.1	14
30	Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance. Scientific Reports, 2017, 7, 1584.	3.3	79
31	Characteristics and source distribution of air pollution in winter in Qingdao, eastern China. Environmental Pollution, 2017, 224, 44-53.	7.5	55
32	Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance. Chemical Engineering Journal, 2017, 314, 477-487.	12.7	264
33	Enhanced microwave absorption capacity of hierarchical structural MnO ₂ @NiMoO ₄ composites. RSC Advances, 2016, 6, 36484-36490.	3.6	9
34	Controlled growth of Cu–Ni nanowires and nanospheres for enhanced microwave absorption properties. Nanotechnology, 2016, 27, 125602.	2.6	17
35	2D MoS ₂ /graphene composites with excellent full Ku band microwave absorption. RSC Advances, 2016, 6, 106187-106193.	3.6	60