Nicholas Jarvis Proudfoot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1747209/publications.pdf

Version: 2024-02-01

148 papers 20,714 citations

9786 73 h-index 139 g-index

157 all docs

157 docs citations

157 times ranked 15352 citing authors

#	Article	IF	CITATIONS
1	Mechanisms of IncRNA biogenesis as revealed by nascent transcriptomics. Nature Reviews Molecular Cell Biology, 2022, 23, 389-406.	37.0	151
2	Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy. Cell, 2022, 185, 2057-2070.e15.	28.9	28
3	Dual RNA 3'-end processing of H2A.X messenger RNA maintains DNA damage repair throughout the cell cycle. Nature Communications, 2021, 12, 359.	12.8	17
4	Enhancers predominantly regulate gene expression during differentiation via transcription initiation. Molecular Cell, 2021, 81, 983-997.e7.	9.7	27
5	POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Molecular Cell, 2021, 81, 1935-1950.e6.	9.7	52
6	R-Loops Promote Antisense Transcription across the Mammalian Genome. Molecular Cell, 2019, 76, 600-616.e6.	9.7	112
7	Transcriptional Control by Premature Termination: A Forgotten Mechanism. Trends in Genetics, 2019, 35, 553-564.	6.7	112
8	SCAF4 and SCAF8, mRNA Anti-Terminator Proteins. Cell, 2019, 177, 1797-1813.e18.	28.9	85
9	Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination. Molecular Cell, 2019, 74, 158-172.e9.	9.7	95
10	Râ€loop formation during S phase is restricted by PrimPolâ€mediated repriming. EMBO Journal, 2019, 38, .	7.8	77
11	The SF3B1 K700E Mutation Induces R-Loop Accumulation and Associated DNA Damage. Blood, 2019, 134, 4219-4219.	1.4	4
12	Nuclear fate of yeast snoRNA is determined by co-transcriptional Rnt1 cleavage. Nature Communications, 2018, 9, 1783.	12.8	24
13	Deregulated Expression of Mammalian IncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence. Molecular Cell, 2018, 72, 970-984.e7.	9.7	140
14	RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts with the Spliceosome during Co-transcriptional Splicing. Molecular Cell, 2018, 72, 369-379.e4.	9.7	123
15	Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription. Cell Reports, 2018, 23, 2119-2129.e3.	6.4	81
16	Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature, 2018, 560, 238-242.	27.8	397
17	RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Molecular Cell, 2018, 70, 650-662.e8.	9.7	133
18	Biosynthesis of histone messenger RNA employs a specific 3' end endonuclease. ELife, 2018, 7, .	6.0	14

#	Article	IF	Citations
19	Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs. Molecular Cell, 2017, 65, 25-38.	9.7	222
20	WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription. Genes and Development, 2017, 31, 2175-2185.	5.9	15
21	Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut. Science, 2016, 352, aad9926.	12.6	341
22	Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide. Nature Protocols, 2016, 11, 413-428.	12.0	86
23	BRCA1 Recruitment to Transcriptional Pause Sites Is Required for R-Loop-Driven DNA Damage Repair. Molecular Cell, 2015, 57, 636-647.	9.7	363
24	Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nature Structural and Molecular Biology, 2015, 22, 319-327.	8.2	120
25	Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing. Cell, 2015, 161, 526-540.	28.9	466
26	Pcf11 orchestrates transcription termination pathways in yeast. Genes and Development, 2015, 29, 849-861.	5.9	66
27	A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes and Development, 2014, 28, 1384-1396.	5.9	432
28	R-loops induce repressive chromatin marks over mammalian gene terminators. Nature, 2014, 516, 436-439.	27.8	299
29	Human nuclear Dicer restricts the deleterious accumulation of endogenous double-stranded RNA. Nature Structural and Molecular Biology, 2014, 21, 552-559.	8.2	95
30	Terminate and make a loop: regulation of transcriptional directionality. Trends in Biochemical Sciences, 2014, 39, 319-327.	7. 5	45
31	Drosha Regulates Gene Expression Independently of RNA Cleavage Function. Cell Reports, 2013, 5, 1499-1510.	6.4	60
32	Definition of RNA Polymerase II CoTC Terminator Elements in the Human Genome. Cell Reports, 2013, 3, 1080-1092.	6.4	28
33	Histone 3 S10 Phosphorylation: "Caught in the R Loop!― Molecular Cell, 2013, 52, 470-472.	9.7	3
34	Disengaging polymerase: Terminating RNA polymerase II transcription in budding yeast. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 174-185.	1.9	118
35	Feed backwards model for microRNA processing and splicing in plants. EMBO Reports, 2013, 14, 581-582.	4.5	7
36	R-Loop Stabilization Represses Antisense Transcription at the <i>Arabidopsis FLC</i> Locus. Science, 2013, 340, 619-621.	12.6	326

#	Article	IF	Citations
37	Genome-wide analysis of poly(A) site selection in <i>Schizosaccharomyces pombe</i> . Rna, 2013, 19, 1617-1631.	3.5	37
38	AT-rich sequence elements promote nascent transcript cleavage leading to RNA polymerase II termination. Nucleic Acids Research, 2013, 41, 1797-1806.	14.5	16
39	Rad51, friend or foe?. ELife, 2013, 2, e00914.	6.0	1
40	Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes and Development, 2012, 26, 1679-1684.	5.9	157
41	Gene Loops Enhance Transcriptional Directionality. Science, 2012, 338, 671-675.	12.6	219
42	Convergent transcription induces transcriptional gene silencing in fission yeast and mammalian cells. Nature Structural and Molecular Biology, 2012, 19, 1193-1201.	8.2	52
43	Transcription termination between polo and snap, two closely spaced tandem genes of D. melanogaster. Transcription, 2012, 3, 198-212.	3.1	13
44	Ending the message: poly(A) signals then and now. Genes and Development, 2011, 25, 1770-1782.	5.9	490
45	Yeast Sen1 Helicase Protects the Genome from Transcription-Associated Instability. Molecular Cell, 2011, 41, 21-32.	9.7	301
46	Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination. Molecular Cell, 2011, 42, 794-805.	9.7	632
47	RNA polymerase II kinetics in <i>polo</i> polyadenylation signal selection. EMBO Journal, 2011, 30, 2431-2444.	7.8	124
48	Autoregulation of convergent RNAi genes in fission yeast. Genes and Development, 2011, 25, 556-568.	5.9	27
49	Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I. Nucleic Acids Research, 2011, 39, 1439-1448.	14.5	20
50	Role of the RNA/DNA kinase Grc3 in transcription termination by RNA polymerase I. EMBO Reports, 2010, 11, 758-764.	4.5	31
51	Silencing in trans: position matters in fission yeast. EMBO Reports, 2010, 11, 145-146.	4.5	1
52	Transcriptional Activation of the General Amino Acid Permease Gene per1 by the Histone Deacetylase Clr6 Is Regulated by Oca2 Kinase. Molecular and Cellular Biology, 2010, 30, 3396-3410.	2.3	6
53	Coupled RNA Processing and Transcription of Intergenic Primary MicroRNAs. Molecular and Cellular Biology, 2009, 29, 5632-5638.	2.3	101
54	Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes and Development, 2009, 23, 2610-2624.	5.9	252

#	Article	IF	CITATIONS
55	Jmjd6 Catalyses Lysyl-Hydroxylation of U2AF65, a Protein Associated with RNA Splicing. Science, 2009, 325, 90-93.	12.6	356
56	Pre-mRNA Processing Reaches Back to Transcription and Ahead to Translation. Cell, 2009, 136, 688-700.	28.9	754
57	Transcriptional Termination Enhances Protein Expression in Human Cells. Molecular Cell, 2009, 33, 354-364.	9.7	63
58	Fail-Safe Transcriptional Termination for Protein-Coding Genes in S. cerevisiae. Molecular Cell, 2009, 36, 88-98.	9.7	96
59	Primary microRNA transcripts are processed co-transcriptionally. Nature Structural and Molecular Biology, 2008, 15, 902-909.	8.2	335
60	Terminating transcription in yeast: whether to be a 'nerd' or a 'rat'. Nature Structural and Molecular Biology, 2008, 15, 775-776.	8.2	18
61	Transcription-Dependent Gene Looping of the HIV-1 Provirus Is Dictated by Recognition of Pre-mRNA Processing Signals. Molecular Cell, 2008, 29, 56-68.	9.7	96
62	Molecular Dissection of Mammalian RNA Polymerase II Transcriptional Termination. Molecular Cell, 2008, 29, 600-610.	9.7	59
63	Cohesin Complex Promotes Transcriptional Termination between Convergent Genes in S. pombe. Cell, 2008, 132, 983-995.	28.9	186
64	Nuclear Roadblocks for mRNA Export. Cell, 2008, 135, 207-208.	28.9	5
65	An Ungracious Host for an Unwelcome Guest. Cell Host and Microbe, 2008, 4, 89-91.	11.0	4
66	Dynamic interactions between the promoter and terminator regions of the mammalian <i>BRCA1</i> gene. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5160-5165.	7.1	127
67	Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes and Development, 2008, 22, 1082-1092.	5.9	120
68	Human Pcf11 enhances degradation of RNA polymerase II-associated nascent RNA and transcriptional termination. Nucleic Acids Research, 2007, 36, 905-914.	14.5	50
69	Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA. Rna, 2007, 14, 359-366.	3.5	20
70	Gene Silencing CUTs Both Ways. Cell, 2007, 131, 649-651.	28.9	5
71	RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA. Nature Structural and Molecular Biology, 2007, 14, 123-130.	8.2	72
72	Adenylation and Exosome-Mediated Degradation of Cotranscriptionally Cleaved Pre-Messenger RNA in Human Cells. Molecular Cell, 2006, 21, 437-443.	9.7	92

#	Article	IF	CITATIONS
73	Exon Tethering in Transcription by RNA Polymerase II. Molecular Cell, 2006, 21, 849-859.	9.7	122
74	Turnover and Function of Noncoding RNA Polymerase II Transcripts. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 275-284.	1.1	3
7 5	Transcriptional termination sequences in the mouse serum albumin gene. Rna, 2006, 12, 655-665.	3.5	18
76	Homologous gene sequences mediate transcription-domain formation. Journal of Cell Science, 2006, 119, 3876-3887.	2.0	10
77	Pause Sites Promote Transcriptional Termination of Mammalian RNA Polymerase II. Molecular and Cellular Biology, 2006, 26, 3986-3996.	2.3	151
78	Strong Polyadenylation and Weak Pausing Combine To Cause Efficient Termination of Transcription in the Human G \hat{I}^3 -Globin Gene. Molecular and Cellular Biology, 2005, 25, 3276-3285.	2.3	31
79	Dicer-Dependent Turnover of Intergenic Transcripts from the Human \hat{I}^2 -Globin Gene Cluster. Molecular and Cellular Biology, 2005, 25, 9724-9733.	2.3	69
80	Polypyrimidine Tract Binding Protein Modulates Efficiency of Polyadenylation. Molecular and Cellular Biology, 2004, 24, 4174-4183.	2.3	155
81	Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6068-6073.	7.1	72
82	Gene loops juxtapose promoters and terminators in yeast. Nature Genetics, 2004, 36, 1014-1018.	21.4	321
83	Autocatalytic RNA cleavage in the human \hat{l}^2 -globin pre-mRNA promotes transcription termination. Nature, 2004, 432, 526-530.	27.8	103
84	Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature, 2004, 432, 522-525.	27.8	396
85	New perspectives on connecting messenger RNA 3′ end formation to transcription. Current Opinion in Cell Biology, 2004, 16, 272-278.	5.4	261
86	Transcription Termination., 2004,, 369-380.		0
87	Dawdling polymerases allow introns time to splice. Nature Structural and Molecular Biology, 2003, 10, 876-878.	8.2	22
88	Regulation of Elongating RNA Polymerase II by Forkhead Transcription Factors in Yeast. Science, 2003, 300, 492-495.	12.6	62
89	Isw1 Chromatin Remodeling ATPase Coordinates Transcription Elongation and Termination by RNA Polymerase II. Cell, 2003, 115, 425-435.	28.9	160
90	Transcriptional collision between convergent genes in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8796-8801.	7.1	231

#	Article	IF	Citations
91	Promoter proximal splice sites enhance transcription. Genes and Development, 2002, 16, 2792-2799.	5.9	234
92	Integrating mRNA Processing with Transcription. Cell, 2002, 108, 501-512.	28.9	927
93	Definition of Transcriptional Promoters in the Human \hat{I}^2 Globin Locus Control Region. Journal of Molecular Biology, 2002, 323, 601-611.	4.2	53
94	A Role for Chromatin Remodeling in Transcriptional Termination by RNA Polymerase II. Molecular Cell, 2002, 10, 1441-1452.	9.7	137
95	Polyadenylation: A tail of two complexes. Current Biology, 2002, 12, R855-R857.	3.9	96
96	U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nature Structural Biology, 2002, 9, 800-5.	9.7	158
97	Transcriptional Termination Factors for RNA Polymerase II in Yeast. Molecular Cell, 2001, 7, 1003-1011.	9.7	56
98	Multiple Transcript Cleavage Precedes Polymerase Release in Termination by RNA Polymerase II. Cell, 2001, 105, 669-681.	28.9	99
99	Genetic dangers in poly(A) signals. EMBO Reports, 2001, 2, 891-892.	4.5	8
100	Intergenic Transcription in the Human \hat{I}^2 -Globin Gene Cluster. Molecular and Cellular Biology, 2001, 21, 6507-6514.	2.3	84
101	The Retroviruses Human Immunodeficiency Virus Type 1 and Moloney Murine Leukemia Virus Adopt Radically Different Strategies To Regulate Promoter-Proximal Polyadenylation. Journal of Virology, 2001, 75, 11735-11746.	3.4	39
102	Connecting transcription to messenger RNA processing. Trends in Biochemical Sciences, 2000, 25, 290-293.	7.5	155
103	Transcriptional termination and coupled polyadenylationin vitro. EMBO Journal, 2000, 19, 3770-3777.	7.8	71
104	Stem-loop 1 of the U1 snRNP plays a critical role in the suppression of HIV-1 polyadenylation. Rna, 2000, 6, 170-177.	3.5	56
105	Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomycescerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8415-8420.	7.1	72
106	Recruitment of a Basal Polyadenylation Factor by the Upstream Sequence Element of the Human Lamin B2 Polyadenylation Signal. Molecular and Cellular Biology, 2000, 20, 2660-2669.	2.3	40
107	Transcription of the human U2 snRNA genes continues beyond the 3′ box in vivo. EMBO Journal, 1999, 18, 2867-2877.	7.8	58
108	Specific Transcriptional Pausing Activates Polyadenylation in a Coupled In Vitro System. Molecular Cell, 1999, 3, 593-600.	9.7	118

#	Article	IF	Citations
109	Terminal Exon Definition Occurs Cotranscriptionally and Promotes Termination of RNA Polymerase II. Molecular Cell, 1999, 3, 371-378.	9.7	146
110	EM Visualization of Transcription by RNA Polymerase II. Molecular Cell, 1999, 3, 379-387.	9.7	71
111	Definition of Transcriptional Pause Elements in Fission Yeast. Molecular and Cellular Biology, 1999, 19, 1251-1261.	2.3	31
112	Nascent transcription from the nmt1 and nmt2 genes of Schizosaccharomyces pombe overlaps neighbouring genes. EMBO Journal, 1998, 17, 3066-3077.	7.8	32
113	Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO Journal, 1998, 17, 4771-4779.	7.8	94
114	Coupling Termination of Transcription to Messenger RNA Maturation in Yeast. Science, 1998, 280, 298-301.	12.6	236
115	Transcriptional interference perturbs the binding of Sp1 to the HIV-1 promoter. Nucleic Acids Research, 1998, 26, 1294-1301.	14.5	104
116	Transcription and polyadenylation in a short human intergenic region. Nucleic Acids Research, 1997, 25, 2326-2335.	14.5	36
117	Transcriptional termination signals for RNA polymerase II in fission yeast. EMBO Journal, 1997, 16, 3633-3643.	7.8	83
118	The HIV-1 5' LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site. EMBO Journal, 1997, 16, 5752-5763.	7.8	105
119	Ending the Message Is Not So Simple. Cell, 1996, 87, 779-781.	28.9	84
120	Activation Domains of Transcription Factors Mediate Replication Dependent Transcription from a Minimal HIV-1 Promoter. Nucleic Acids Research, 1996, 24, 549-557.	14.5	13
121	Proximal promoter elements of the human zeta-globin gene confer embryonic-specific expression on a linked reporter gene in transgenic mice. Nucleic Acids Research, 1996, 24, 4158-4164.	14.5	7
122	Sp1 functions in a chromatin-dependent manner to augment human alpha-globin promoter activity Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7237-7241.	7.1	30
123	Expression of the early lymphocyte activation antigen CD69, a C-type lectin, is regulated by mRNA degradation associated with AU-rich sequence motifs. European Journal of Immunology, 1995, 25, 2142-2146.	2.9	43
124	Post-Transcriptional Regulation: Chasing your own poly(A) tail. Current Biology, 1994, 4, 359-361.	3.9	4
125	The primary transcription unit of the human (eqn)a2 globin gene defined by quantitative RT/PCR. Nucleic Acids Research, 1992, 20, 851-858.	14.5	15
126	Poly(A) signals. Cell, 1991, 64, 671-674.	28.9	459

#	Article	IF	CITATIONS
127	A factor binding GATAAG confers tissue specificity on the promoter of the humanζ-globin gene. Nucleic Acids Research, 1990, 18, 1339-1350.	14.5	52
128	How RNA polymerase II terminates transcription in higher eukaryotes. Trends in Biochemical Sciences, 1989, 14, 105-110.	7.5	284
129	A beginning to the biochemistry of polyadenylation. Trends in Genetics, 1988, 4, 243-245.	6.7	83
130	Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit \hat{l}^2 -globin mRNA $3\hat{a}$ \in 2 end formation. Cell, 1987, 49, 399-406.	28.9	241
131	The gene for Î,-globin is transcribed in human fetal erythroid tissues. Nature, 1987, 329, 551-554.	27.8	39
132	Molecular biology: Globin gene monkey business. Nature, 1986, 321, 730-731.	27.8	11
133	A sequence downstream of AAUAAA is required for rabbit β-globin mRNA 3′-end formation. Nature, 1984, 312, 473-474.	27.8	291
134	α-Thalassaemia caused by a polyadenylation signal mutation. Nature, 1983, 306, 398-400.	27.8	403
135	A single-base change at a splice site in a \hat{l}^2 0-thalassemic gene causes abnormal RNA splicing. Cell, 1982, 29, 903-911.	28.9	375
136	The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene. Cell, 1982, 31, 553-563.	28.9	331
137	The end of the message. Nature, 1982, 298, 516-517.	27.8	62
138	Structure and in vitro transcription of human globin genes. Science, 1980, 209, 1329-1336.	12.6	247
139	The structure and evolution of the human \hat{l}^2 -globin gene family. Cell, 1980, 21, 653-668.	28.9	1,565
140	The structure of a human α-globin pseudogene and its relationship to α-globin gene duplication. Cell, 1980, 21, 537-544.	28.9	279
141	Characterization of \hat{l}^2 -globin mRNA in the \hat{l}^2 0 thalassemias. Cell, 1978, 14, 289-298.	28.9	45
142	Nucleotide sequence of the 3′ terminal third of rabbit α-globin messenger RNA: Comparison with human α-globin messenger RNA. Cell, 1977, 11, 807-818.	28.9	56
143	Complete 3′ noncoding region sequences of rabbit and human β-globin messenger RNAs. Cell, 1977, 10, 559-570.	28.9	105
144	The sequence is not enough. Nature, 1977, 265, 499-500.	27.8	1

#	ARTICLE	IF	CITATIONS
145	The 3\$prime; terminal sequences of human \$alpha; and \$beta; globin messenger RNAs: Comparison with rabbit globin messenger RNA. Cell, 1976, 9, 733-746.	28.9	61
146	Sequence analysis of the $3\hat{a} \in \mathbb{Z}^2$ non-coding regions of rabbit \hat{l}_{\pm} - and \hat{l}^2 -globin messenger RNAs. Journal of Molecular Biology, 1976, 107, 491-525.	4.2	48
147	Sequence analysis of immunoglobulin light chain messenger RNA. Nature, 1974, 252, 354-359.	27.8	129
148	Nucleotide sequence adjacent to polyadenylic acid in globin messenger RNA. FEBS Letters, 1974, 38, 179-183.	2.8	26