
Yasuaki Tokudome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1746355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Centimetre-scale micropore alignment in oriented polycrystalline metal–organic framework films via heteroepitaxial growth. Nature Materials, 2017, 16, 342-348.	13.3	298
2	Synthesis of Monolithic Al2O3 with Well-Defined Macropores and Mesostructured Skeletons via the Solâ^Gel Process Accompanied by Phase Separation. Chemistry of Materials, 2007, 19, 3393-3398.	3.2	198
3	Copper Conversion into Cu(OH) ₂ Nanotubes for Positioning Cu ₃ (BTC) ₂ MOF Crystals: Controlling the Growth on Flat Plates, 3D Architectures, and as Patterns. Advanced Functional Materials, 2014, 24, 1969-1977.	7.8	150
4	MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 6886-6890.	7.2	145
5	Fusion of Phosphole and 1,1′â€Biacenaphthene: Phosphorus(V)â€Containing Extended Ï€â€Systems with High Electron Affinity and Electron Mobility. Angewandte Chemie - International Edition, 2011, 50, 8016-8020.	7.2	115
6	Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry. ACS Nano, 2016, 10, 5550-5559.	7.3	89
7	Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths. Journal of Colloid and Interface Science, 2009, 338, 506-513.	5.0	87
8	Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for Solid-State Emitting Devices. Scientific Reports, 2017, 7, 5469.	1.6	68
9	Layered double hydroxide (LDH)-based monolith with interconnected hierarchical channels: enhanced sorption affinity for anionic species. Journal of Materials Chemistry A, 2013, 1, 7702.	5.2	58
10	3D hierarchical and porous layered double hydroxide structures: an overview of synthesis methods and applications. Journal of Materials Science, 2017, 52, 11229-11250.	1.7	57
11	Positioning of the HKUST-1 metal–organic framework (Cu ₃ (BTC) ₂) through conversion from insoluble Cu-based precursors. Inorganic Chemistry Frontiers, 2015, 2, 434-441.	3.0	54
12	Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors. Journal of Sol-Gel Science and Technology, 2011, 57, 269-278.	1.1	48
13	Sol-gel Synthesis of Macroporous YAG from Ionic Precursors via Phase Separation Route. Journal of the Ceramic Society of Japan, 2007, 115, 925-928.	0.5	45
14	A nanoLDH catalyst with high CO ₂ adsorption capability for photo-catalytic reduction. Journal of Materials Chemistry A, 2018, 6, 9684-9690.	5.2	43
15	Switchable and reversible water adhesion on superhydrophobic titanate nanostructures fabricated on soft substrates: photopatternable wettability and thermomodulatable adhesivity. Journal of Materials Chemistry A, 2014, 2, 58-61.	5.2	41
16	Single-Nanometer-Sized Low-Valence Metal Hydroxide Crystals: Synthesis via Epoxide-Mediated Alkalinization and Assembly toward Functional Mesoporous Materials. Chemistry of Materials, 2016, 28, 5606-5610.	3.2	40
17	MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 6960-6964.	1.6	37
18	Cr3+-doped macroporous Al2O3 monoliths prepared by the metal-salt-derived sol–gel method. Journal of Non-Crystalline Solids. 2008. 354. 659-664.	1.5	34

ΥΑSUAKI ΤΟΚUDOME

#	Article	IF	CITATIONS
19	Thermoresponsive Wrinkles on Hydrogels for Soft Actuators. Advanced Materials Interfaces, 2016, 3, 1500802.	1.9	33
20	Controlling the alignment of 1D nanochannel arrays in oriented metal–organic framework films for host–guest materials design. Chemical Science, 2020, 11, 8005-8012.	3.7	31
21	Fabrication of hierarchically porous monolithic layered double hydroxide composites with tunable microcages for effective oxyanion adsorption. RSC Advances, 2015, 5, 57187-57192.	1.7	30
22	Hierarchical Nested Wrinkles on Silicaâ^'Polymer Hybrid Films: Stimuli-Responsive Micro Periodic Surface Architectures. Scientific Reports, 2012, 2, 683.	1.6	27
23	Molecularly imprinted La-doped mesoporous titania films with hydrolytic properties toward organophosphate pesticides. New Journal of Chemistry, 2013, 37, 2995.	1.4	25
24	Electrochemical sensing and catalysis using Cu ₃ (BTC) ₂ coating electrodes from Cu(OH) ₂ films. CrystEngComm, 2017, 19, 4194-4200.	1.3	25
25	In situ SAXS observation on metal–salt-derived alumina sol–gel system accompanied by phase separation. Journal of Colloid and Interface Science, 2010, 352, 303-308.	5.0	23
26	Transparent and Robust Siloxane-Based Hybrid Lamella Film As a Water Vapor Barrier Coating. ACS Applied Materials & Interfaces, 2014, 6, 19355-19359.	4.0	23
27	Highly Ordered Mesoporous Hydroxide Thin Films through Self-Assembly of Size-Tailored Nanobuilding Blocks: A Theoretical-Experimental Approach. Chemistry of Materials, 2019, 31, 322-330.	3.2	23
28	Synthesis of high-silica and low-silica zeolite monoliths with trimodal pores. Microporous and Mesoporous Materials, 2010, 132, 538-542.	2.2	22
29	Combining Top-Down and Bottom-Up Routes for Fabrication of Mesoporous Titania Films Containing Ceria Nanoparticles for Free Radical Scavenging. ACS Applied Materials & Interfaces, 2013, 5, 3168-3175.	4.0	22
30	Titanate nanofunnel brushes: toward functional interfacial applications. Chemical Communications, 2012, 48, 6130.	2.2	20
31	Effect of La addition on thermal microstructural evolution of macroporous alumina monolith prepared from ionic precursors. Journal of the Ceramic Society of Japan, 2009, 117, 351-355.	0.5	19
32	Layered double hydroxide composite monoliths with three-dimensional hierarchical channels: structural control and adsorption behavior. RSC Advances, 2014, 4, 16075-16080.	1.7	19
33	High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure. Langmuir, 2016, 32, 8826-8833.	1.6	18
34	Strain-driven self-rolling of hybrid organic–inorganic microrolls: interfaces with self-assembled particles. NPG Asia Materials, 2012, 4, e22-e22.	3.8	17
35	Synthesis of Co–Al layered double hydroxide nanoclusters as reduction nanocatalyst in aqueous media. Journal of Asian Ceramic Societies, 2017, 5, 466-471.	1.0	17
36	Macroporous Titanate Nanotube/TiO ₂ Monolith for Fast and Large-Capacity Cation Exchange. Chemistry of Materials, 2015, 27, 1885-1891.	3.2	16

ΥΑSUAKI ΤΟΚUDOME

#	Article	IF	CITATIONS
37	Morphology control of BiFeO ₃ aggregates <i>via</i> hydrothermal synthesis. Journal of Applied Crystallography, 2016, 49, 168-174.	1.9	16
38	Imparting CO ₂ reduction selectivity to ZnGa ₂ O ₄ photocatalysts by crystallization from hetero nano assembly of amorphous-like metal hydroxides. RSC Advances, 2020, 10, 8066-8073.	1.7	15
39	Thermo-responsive wettability <i>via</i> surface roughness change on polymer-coated titanate nanorod brushes toward fast and multi-directional droplet transport. RSC Advances, 2020, 10, 28032-28036.	1.7	14
40	Synthesis of high-specific-surface-area Li-Al mixed metal oxide: Through nanoseed-assisted growth of layered double hydroxide. Applied Clay Science, 2021, 203, 106006.	2.6	13
41	Coffee stain-driven self-assembly of mesoporous rings. Microporous and Mesoporous Materials, 2012, 163, 356-362.	2.2	11
42	Highly oriented growth of titanate nanotubes (TNTs) in micro and confinement spaces on sol–gel derived amorphous TiO2 thin films under moderate hydrothermal condition. Journal of Sol-Gel Science and Technology, 2013, 65, 36-40.	1.1	11
43	Microparticles with hetero-nanointerfaces: controlled assembly of cobalt hydroxide and nickel hydroxide nanoclusters towards improved electrochemical functions. Journal of Materials Chemistry A, 2019, 7, 25290-25296.	5.2	11
44	Mesoporous microspheres of nickel-based layered hydroxides by aerosol-assisted self-assembly using crystalline nano-building blocks. Journal of Sol-Gel Science and Technology, 2019, 89, 216-224.	1.1	10
45	Layered Double Hydroxide Nanosheets on Plasmonic Arrays of Al Nanocylinders for Optical Sensing. ACS Applied Nano Materials, 2020, 3, 5838-5845.	2.4	10
46	Electrochromic Thin Films Based on NiAl Layered Double Hydroxide Nanoclusters for Smart Windows and Low-Power Displays. ACS Applied Nano Materials, 2020, 3, 6552-6562.	2.4	9
47	Enhanced hole injection in organic light-emitting diodes by optimized synthesis of self-assembled monolayer. Organic Electronics, 2011, 12, 1600-1605.	1.4	8
48	Aqueous synthesis of metal hydroxides with controllable nano/macro architectures. Journal of the Ceramic Society of Japan, 2017, 125, 597-602.	0.5	8
49	Synthesis of a Crystalline and Transparent Aerogel Composed of Ni–Al Layered Double Hydroxide Nanoparticles through Crystallization from Amorphous Hydrogel. Langmuir, 2020, 36, 9436-9442.	1.6	7
50	Graphene oxide incorporation in lamellar organosiloxane film for improved water vapor barrier property. Journal of Sol-Gel Science and Technology, 2016, 79, 405-409.	1.1	6
51	Anisotropic and Reversible Deformation of Mesopores and Mesostructures in Silica-Based Films under Mechanical Stimuli toward Adaptive Optical Components. ACS Applied Nano Materials, 2019, 2, 2377-2382.	2.4	6
52	Micropattern Formation by Molecular Migration via UVâ€induced Dehydration of Block Copolymers. Advanced Functional Materials, 2014, 24, 2801-2809.	7.8	5
53	Mesostructured carbon film with morphology-induced hydrophilic surface through a dewetting-free coating process. Carbon, 2014, 77, 1104-1110.	5.4	5
54	Responsive microstructures on organic–inorganic hybrid films. Journal of Sol-Gel Science and Technology, 2014, 70, 272-277.	1.1	4

ΥΑSUAKI ΤΟΚUDOME

#	Article	IF	CITATIONS
55	Reactivity of silanol group on siloxane oligomers for designing molecular structure and surface wettability. Journal of Sol-Gel Science and Technology, 2021, 97, 734-742.	1.1	4
56	Superhydrophobic adhesive surface on titanate nanotube brushes through surface modification by capric acid. Journal of Sol-Gel Science and Technology, 2016, 79, 389-394.	1.1	3
57	Phase Separation in Al ₂ O ₃ Sol-gel System Incorporated with High Molecular Weight Poly(ethylene oxide). Materials Research Society Symposia Proceedings, 2007, 1007, 1.	0.1	1
58	Controlled site modification of inorganic networks in hybrid photocurable resins for high thermal crack resistance. Journal of Sol-Gel Science and Technology, 2013, 65, 318-323.	1.1	1
59	Formation mechanism of photo-induced nested wrinkles on siloxane-photomonomer hybrid film. , 2014, , .		1
60	Innentitelbild: MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks (Angew. Chem. 21/2019). Angewandte Chemie, 2019, 131, 6856-6856.	1.6	1
61	Preparation of Silicophosphate Alternating Hybrid Copolymers via Nonaqueous Acid-Base Reactions of Phosphoric Acid and Organo-Bridged Bis(chlorosilane). Molecules, 2020, 25, 127.	1.7	1
62	Synthesis of Colloidal Suspension of NiGa ₂ O ₄ Nanoparticles through Gel-Sol Method using Organic Base. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 429-434.	0.1	1
63	Curable Layered Double Hydroxide Nanoparticlesâ€Based Perfusion Contrast Agents for Xâ€Ray Computed Tomography Imaging of Vascular Structures. Advanced NanoBiomed Research, 0, , 2100123.	1.7	1
64	Fabrication of Hybrid Monodispersed Microspheres with Well-Defined Surface Textures. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2015, 23, 123-128.	0.0	0
65	Colloidal dispersion of chiral layered hydroxide salt (LHS) nanocrystals exhibiting chiroptical response. Journal of Sol-Gel Science and Technology, 0, , 1.	1.1	0
66	Size Tuning of Colloidal Co-Al LDH Nanoparticles by Dialysis Treatment. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, 131-135.	0.1	0