
MarÃ-a Francisca Fillat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1746263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The FUR (ferric uptake regulator) superfamily: Diversity and versatility of key transcriptional regulators. Archives of Biochemistry and Biophysics, 2014, 546, 41-52.	3.0	289
2	Functional Replacement of Ferredoxin by a Cyanobacterial Flavodoxin in Tobacco Confers Broad-Range Stress Tolerance. Plant Cell, 2006, 18, 2035-2050.	6.6	169
3	Iron availability affects <i>mcyD</i> expression and microcystin‣R synthesis in <i>Microcystis aeruginosa</i> PCC7806. Environmental Microbiology, 2008, 10, 2476-2483.	3.8	161
4	Identification of a furA cis Antisense RNA in the Cyanobacterium Anabaena sp. PCC 7120. Journal of Molecular Biology, 2006, 355, 325-334.	4.2	95
5	Cross-talk Between Iron and Nitrogen Regulatory Networks in Anabaena (Nostoc) sp. PCC 7120: Identification of Overlapping Genes in FurA and NtcA Regulons. Journal of Molecular Biology, 2007, 374, 267-281.	4.2	90
6	Identification of Free-Living Amoebae and Amoeba-Associated Bacteria from Reservoirs and Water Treatment Plants by Molecular Techniques. Environmental Science & Technology, 2013, 47, 3132-3140.	10.0	81
7	Flavodoxin from the nitrogen-fixing cyanobacterium Anabaena PCC 7119. Archives of Microbiology, 1988, 150, 160-164.	2.2	77
8	Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology, 2010, 19, 1167-1173.	2.4	65
9	Strong inhibition of thioredoxin reductase by highly cytotoxic gold(I) complexes. DNA binding studies. Journal of Inorganic Biochemistry, 2014, 130, 32-37.	3.5	57
10	Fur from Microcystis aeruginosa binds in vitro promoter regions of the microcystin biosynthesis gene cluster. Phytochemistry, 2006, 67, 876-881.	2.9	55
11	<scp>FurA</scp> is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes in <i><scp>A</scp>nabaena</i> sp. <scp>PCC</scp> 7120. Environmental Microbiology, 2012, 14, 3175-3187.	3.8	54
12	Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC 7119: factors affecting its oligomerization state. Biochemical Journal, 2002, 366, 315-322.	3.7	51
13	Three fur homologues from Anabaena sp. PCC7120: exploring reciprocal protein-promoter recognition. FEMS Microbiology Letters, 2004, 236, 275-282.	1.8	50
14	Electrostatic and Hydrophobic Interactions during Complex Formation and Electron Transfer in the Ferredoxin/Ferredoxin:NADP+Reductase System fromAnabaena. Journal of the American Chemical Society, 1996, 118, 5526-5531.	13.7	47
15	New insights into the role of Fur proteins: FurB (<i>All2473</i>) from <i>Anabaena</i> protects DNA and increases cell survival under oxidative stress. Biochemical Journal, 2009, 418, 201-207.	3.7	44
16	Overexpression of FurA in Anabaena sp. PCC 7120 Reveals New Targets for This Regulator Involved in Photosynthesis, Iron Uptake and Cellular Morphology. Plant and Cell Physiology, 2010, 51, 1900-1914.	3.1	42
17	The FurA regulon in Anabaena sp. PCC 7120: in silico prediction and experimental validation of novel target genes. Nucleic Acids Research, 2014, 42, 4833-4846.	14.5	41
18	Effects of lindane on the photosynthetic apparatus of the cyanobacteriumanabaena. Environmental Science and Pollution Research, 2004, 11, 98-106.	5.3	40

#	Article	IF	CITATIONS
19	Unravelling the regulatory function of FurA in Anabaena sp. PCC 7120 through 2-D DIGE proteomic analysis. Journal of Proteomics, 2011, 74, 660-671.	2.4	40
20	Phosphate deficiency (N/P 40:1) induces mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806. Plant Physiology and Biochemistry, 2013, 65, 120-124.	5.8	37
21	2-oxoglutarate enhances NtcA binding activity to promoter regions of the microcystin synthesis gene cluster. FEBS Letters, 2011, 585, 3921-3926.	2.8	35
22	Identifying potential novel drugs against Helicobacter pylori by targeting the essential response regulator HsrA. Scientific Reports, 2019, 9, 11294.	3.3	35
23	Mutants of Anabaena sp. PCC 7120 lacking alr1690 and α-furA antisense RNA show a pleiotropic phenotype and altered photosynthetic machinery. Journal of Plant Physiology, 2010, 167, 430-437.	3.5	34
24	Heme binds to and inhibits the DNA-binding activity of the global regulator FurA fromAnabaenasp. PCC 7120. FEBS Letters, 2004, 577, 35-41.	2.8	33
25	Identification of a Ferric uptake regulator fromMicrocystis aeruginosaPCC7806. FEMS Microbiology Letters, 2006, 254, 63-70.	1.8	33
26	Expanding the Role of FurA as Essential Global Regulator in Cyanobacteria. PLoS ONE, 2016, 11, e0151384.	2.5	33
27	Synthesis, Structure and Bactericide Activity of (Aminophosphane)gold(I) Thiolate Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 1487-1495.	2.0	31
28	FurA modulates gene expression ofalr3808, a DpsA homologue inNostoc(Anabaena) sp. PCC7120. FEBS Letters, 2007, 581, 1351-1356.	2.8	30
29	An active photosynthetic electron transfer chain required for mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806. Ecotoxicology, 2012, 21, 811-819.	2.4	30
30	Siteâ€directed mutagenesis and spectral studies suggest a putative role of FurA from <i>Anabaena</i> sp. PCC 7120 as a heme sensor protein. FEBS Journal, 2012, 279, 2231-2246.	4.7	26
31	Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog. Archives of Biochemistry and Biophysics, 2021, 701, 108770.	3.0	26
32	Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxidants and Redox Signaling, 2019, 30, 1651-1696.	5.4	25
33	Expression of fur and its antisense α-fur from Microcystis aeruginosa PCC7806 as response to light and oxidative stress. Journal of Plant Physiology, 2011, 168, 2244-2250.	3.5	24
34	Microcystin-LR Binds Iron, and Iron Promotes Self-Assembly. Environmental Science & Technology, 2017, 51, 4841-4850.	10.0	24
35	Unraveling the Redox Properties of the Global Regulator FurA from <i>Anabaena</i> sp. PCC 7120: Disulfide Reductase Activity Based on Its CXXC Motifs. Antioxidants and Redox Signaling, 2014, 20, 1396-1406.	5.4	21
36	Identification of three novel antisense RNAs in the fur locus from unicellular cyanobacteria. Microbiology (United Kingdom), 2011, 157, 3398-3404.	1.8	20

#	Article	IF	CITATIONS
37	FurA influences heterocyst differentiation in <i>Anabaena</i> sp. PCC 7120. FEBS Letters, 2013, 587, 2682-2690.	2.8	19
38	<scp>Z</scp> ur (<scp>FurB</scp>) is a key factor in the control of the oxidative stress response in <scp><i>A</i></scp> <i>nabaena</i> sp. <scp>PCC</scp> 7120. Environmental Microbiology, 2015, 17, 2006-2017.	3.8	19
39	A new pentaplex-nested PCR to detect five pathogenic bacteria in free living amoebae. Water Research, 2013, 47, 493-502.	11.3	18
40	γ-Lindane Increases Microcystin Synthesis in Microcystis aeruginosa PCC7806. Marine Drugs, 2015, 13, 5666-5680.	4.6	18
41	Transcriptional regulators: valuable targets for novel antibacterial strategies. Future Medicinal Chemistry, 2018, 10, 541-560.	2.3	18
42	Overexpression in E. coli of the complete petH gene product from Anabaena: purification and properties of a 49 kDa ferredoxin-NADP+ reductase. BBA - Proteins and Proteomics, 1996, 1297, 200-206.	2.1	17
43	Oligomerization properties of FurA from the cyanobacterium Anabaena sp. PCC 7120: Direct visualization by in situ atomic force microscopy under different redox conditions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1723-1729.	2.3	17
44	Cysteine Mutational Studies Provide Insight into a Thiol-Based Redox Switch Mechanism of Metal and DNA Binding in FurA from <i>Anabaena</i> sp. PCC 7120. Antioxidants and Redox Signaling, 2016, 24, 173-185.	5.4	16
45	Mesoscopic Model and Free Energy Landscape for Protein-DNA Binding Sites: Analysis of Cyanobacterial Promoters. PLoS Computational Biology, 2014, 10, e1003835.	3.2	14
46	Sequential binding of FurA from Anabaena sp. PCC 7120 to iron boxes: Exploring regulation at the nanoscale. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 623-631.	2.3	14
47	Three fur homologues from Anabaena sp. PCC7120: exploring reciprocal protein-promoter recognition. FEMS Microbiology Letters, 2004, 236, 275-282.	1.8	14
48	The Conformational Stability and Thermodynamics of Fur A (Ferric Uptake Regulator) from Anabaena sp. PCC 7119. Biophysical Journal, 2005, 89, 4188-4200.	0.5	10
49	High-recovery one-step purification of the DNA-binding protein Fur by mild guanidinium chloride treatment. Process Biochemistry, 2010, 45, 292-296.	3.7	10
50	Molecular basis for the integration of environmental signals by FurB from <i>Anabaena</i> sp. PCC 7120. Biochemical Journal, 2018, 475, 151-168.	3.7	10
51	The Challenge of Iron Stress in Cyanobacteria. , 0, , .		10
52	Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport. Advances in Microbial Physiology, 2016, 68, 169-217.	2.4	9
53	The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress. BMC Genomics, 2015, 16, 557.	2.8	8
54	Regulation by FurC in <i>Anabaena</i> Links the Oxidative Stress Response to Photosynthetic Metabolism. Plant and Cell Physiology, 2019, 60, 1778-1789.	3.1	8

#	Article	IF	CITATIONS
55	<scp>FurC</scp> (<scp>PerR</scp>) from <i>Anabaena</i> sp. <scp>PCC7120</scp> : a versatile transcriptional regulator engaged in the regulatory network of heterocyst development and nitrogen fixation. Environmental Microbiology, 2022, 24, 566-582.	3.8	8
56	2â€oxoglutarate modulates the affinity of FurA for the <i>ntcA</i> promoter in <i>Anabaena</i> sp. PCC 7120. FEBS Letters, 2020, 594, 278-289.	2.8	6
57	The 36 kDa form of ferrodoxin-NADP+ reductase from Anabaena co-purifies with phycobiliproteins. Bioelectrochemistry, 1995, 38, 57-61.	1.0	3
58	Overexpression, immunodetection, and siteâ€directed mutagenesis of <i>Anabaena</i> sp. PCC 7120 flavodoxin: A comprehensive laboratory practice on molecular biology. Biochemistry and Molecular Biology Education, 2018, 46, 493-501.	1.2	2
59	Thioredoxin Dependent Changes in the Redox States of FurA from Anabaena sp. PCC 7120. Antioxidants, 2021, 10, 913.	5.1	2
60	Contributions on Lindane Degradation by Microcystis aeruginosa PCC 7806. Water (Switzerland), 2022, 14, 1219.	2.7	2
61	Exploring the ability of cyanobacterial ferric uptake regulator (FUR) proteins to increase yeast tolerance to abiotic stresses. , 2022, , 179-196.		Ο