David J Nesbitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/174607/publications.pdf

Version: 2024-02-01

208 papers 11,188 citations

51 h-index 97 g-index

219 all docs

219 docs citations

219 times ranked

9537 citing authors

#	Article	IF	CITATIONS
1	High-resolution infrared spectroscopy of supersonically cooled singlet carbenes: Bromomethylene (HCBr) in the CH stretch region. Journal of Chemical Physics, 2022, 156, 014304.	1.2	O
2	Regulating and Directionally Controlling Electron Emission from Gold Nanorods with Silica Coatings. Nano Letters, 2022, 22, 644-651.	4.5	8
3	Lysine-Dependent Entropy Effects in the <i>B. subtilis</i> Lysine Riboswitch: Insights from Single-Molecule Thermodynamic Studies. Journal of Physical Chemistry B, 2022, 126, 69-79.	1.2	3
4	Formation and detection of metastable formic acid in a supersonic expansion: High resolution infrared spectroscopy of the jet-cooled <i>cis</i> -HCOOH conformer. Journal of Chemical Physics, 2022, 156, .	1.2	1
5	High-resolution CH stretch spectroscopy of jet-cooled cyclopentyl radical: First insights into equilibrium structure, out-of-plane puckering, and IVR dynamics. Journal of Chemical Physics, 2022, 157,	1.2	1
6	Smaller molecules crowd better: Crowder size dependence revealed by single-molecule FRET studies and depletion force modeling analysis. Journal of Chemical Physics, 2021, 154, 155101.	1.2	20
7	Pushing Camera-Based Single-Molecule Kinetic Measurements to the Frame Acquisition Limit with Stroboscopic smFRET. Journal of Physical Chemistry B, 2021, 125, 6080-6089.	1.2	4
8	Size Effects in Gold Nanorod Light-to-Heat Conversion under Femtosecond Illumination. Journal of Physical Chemistry C, 2021, 125, 16268-16278.	1.5	18
9	Measuring Excess Heat Capacities of Deoxyribonucleic Acid (DNA) Folding at the Single-Molecule Level. Journal of Physical Chemistry B, 2021, 125, 9719-9726.	1.2	2
10	Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
11	Controlling the Spatial and Momentum Distributions of Plasmonic Carriers: Volume <i>vs</i> Surface Effects. ACS Nano, 2021, 15, 1566-1578.	7.3	15
12	State-Resolved Studies of OCS Scattering at the Gas–Liquid Interface: Tests of Landau—Teller/Rapp Theory for Rotational vs Vibrational Energy Transfer. Journal of Physical Chemistry C, 2021, 125, 22786-22796.	1.5	1
13	Nonadiabatic Dynamics at the Gas–Molten Metal Interface: State-to-State Resolved Scattering of NO from Hot Gallium (600–1000 K). Journal of Physical Chemistry C, 2021, 125, 341-353.	1.5	3
14	Effects of Molecular Crowders on Single-Molecule Nucleic Acid Folding: Temperature-Dependent Studies Reveal True Crowding vs Enthalpic Interactions. Journal of Physical Chemistry B, 2021, 125, 13147-13157.	1.2	15
15	High-resolution infrared spectroscopy of HCF in the CH stretch region. Journal of Chemical Physics, 2020, 152, 014305.	1.2	2
16	DNA Hairpin Hybridization under Extreme Pressures: A Single-Molecule FRET Study. Journal of Physical Chemistry B, 2020, 124, 110-120.	1.2	16
17	Sequential Folding of the Nickel/Cobalt Riboswitch Is Facilitated by a Conformational Intermediate: Insights from Single-Molecule Kinetics and Thermodynamics. Journal of Physical Chemistry B, 2020, 124, 7348-7360.	1.2	13
18	Continuous angular control over anisotropic photoemission from isotropic gold nanoshells. Journal of Chemical Physics, 2020, 153, 101101.	1.2	8

#	Article	IF	Citations
19	High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation. Physical Chemistry Chemical Physics, 2020, 22, 15853-15866.	1.3	13
20	Chirality-Dependent Amino Acid Modulation of RNA Folding. Journal of Physical Chemistry B, 2020, 124, 11561-11572.	1.2	9
21	Plasmonic nanostar photocathodes for optically-controlled directional currents. Nature Communications, 2020, 11, 1367.	5.8	32
22	High-resolution infrared spectroscopy of jet cooled CH2Br radicals: The symmetric CH stretch manifold and absence of nuclear spin cooling. Journal of Chemical Physics, 2020, 152, 134305.	1,2	6
23	Single-molecule kinetic studies of DNA hybridization under extreme pressures. Physical Chemistry Chemical Physics, 2020, 22, 23491-23501.	1.3	11
24	Low-Energy CO Scattering at the Gas–Liquid Interface: Experimental/Theoretical Evidence for a Novel Subthermal Impulsive Scattering (STIS) Channel. Journal of Physical Chemistry C, 2020, 124, 28006-28017.	1.5	5
25	High-resolution infrared spectroscopy of jet cooled <i>trans</i> -deuteroxycarbonyl (<i>trans</i> -DOCO) radical. Journal of Chemical Physics, 2019, 150, 194304.	1.2	2
26	Novel Heat-Promoted Folding Dynamics of the <i>yybP-ykoY</i> Manganese Riboswitch: Kinetic and Thermodynamic Studies at the Single-Molecule Level. Journal of Physical Chemistry B, 2019, 123, 5412-5422.	1,2	13
27	Suppressed-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: ν1 and ν4 NH stretching modes in NH3D+. Journal of Chemical Physics, 2019, 151, 084302.	1.2	1
28	Single-Molecule FRET Kinetics of the Mn ²⁺ Riboswitch: Evidence for Allosteric Mg ²⁺ Control of "Induced-Fit―vs "Conformational Selection―Folding Pathways. Journal of Physical Chemistry B, 2019, 123, 2005-2015.	1.2	25
29	Quantum-state-resolved studies of aqueous evaporation dynamics: NO ejection from a liquid water microjet. Journal of Chemical Physics, 2019, 150, 044201.	1.2	12
30	Quantum State and Doppler-Resolved Scattering of Thermal/Hyperthermal DCl at the Gas–Liquid Interface: Support for a Simple "Lever Arm―Model of the Energy-Transfer Dynamics. Journal of Physical Chemistry C, 2019, 123, 3449-3460.	1.5	6
31	Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nature Protocols, 2018, 13, 987-1005.	5.5	27
32	Angle- and Momentum-Resolved Photoelectron Velocity Map Imaging Studies of Thin Au Film and Single Supported Au Nanoshells. Journal of Physical Chemistry C, 2018, 122, 3970-3984.	1.5	15
33	Sub-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: Symmetric ($1\frac{1}{2}$ 1) and antisymmetric ($1\frac{1}{2}$ 6) NH stretching modes in ND2H2+. Journal of Chemical Physics, 2018, 148, 014304.	1.2	7
34	Synergistic SHAPE/Single-Molecule Deconvolution of RNA Conformation under Physiological Conditions. Biophysical Journal, 2018, 114, 1762-1775.	0.2	3
35	Amino Acid Stabilization of Nucleic Acid Secondary Structure: Kinetic Insights from Single-Molecule Studies. Journal of Physical Chemistry B, 2018, 122, 9869-9876.	1.2	19
36	Infrared spectroscopy of jet-cooled HCCl singlet chlorocarbene diradical: CH stretching and vibrational coupling dynamics. Journal of Chemical Physics, 2018, 149, 074303.	1.2	4

#	Article	IF	Citations
37	Sub-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: The NH stretching mode in ND3H+. Journal of Chemical Physics, 2018, 149, 144303.	1.2	3
38	Polarization-Controlled Directional Multiphoton Photoemission from Hot Spots on Single Au Nanoshells. Journal of Physical Chemistry C, 2018, 122, 14805-14813.	1.5	11
39	High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing―dynamics. Journal of Chemical Physics, 2018, 148, 174308.	1.2	7
40	Quantum-State-Resolved Scattering of NO(² Î _{1/2}) from Hot Molten Au(liq): On the Role of Thermal Electron–Hole Pairs in Vibrational Excitation Dynamics. Journal of Physical Chemistry C, 2018, 122, 17161-17169.	1.5	5
41	Tests of Kramers' Theory at the Single-Molecule Level: Evidence for Folding of an Isolated RNA Tertiary Interaction at the Viscous Speed Limit. Journal of Physical Chemistry B, 2018, 122, 8796-8804.	1.2	13
42	Near infrared overtone (vOH = 2 ↕0) spectroscopy of Ne–H2O clusters. Journal of Chemical Physics, 2017, 146, 104204.	1.2	9
43	Sub-Doppler infrared spectroscopy of CH2OH radical in a slit supersonic jet: Vibration-rotation-tunneling dynamics in the symmetric CH stretch manifold. Journal of Chemical Physics, 2017, 146, 194307.	1.2	5
44	Sub-Doppler infrared spectroscopy of resonance-stabilized hydrocarbon intermediates: $\langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle \langle sub \rangle \langle i \rangle \hat{l}/2 \langle i \rangle \langle sub \rangle \langle i \rangle$	1.3	7
45	Nuclear spin/parity dependent spectroscopy and predissociation dynamics in vOH = 2 ↕0 overtone excited Ne–H2O clusters: Theory and experiment. Journal of Chemical Physics, 2017, 147, 214304.	1.2	5
46	Angle-resolved molecular beam scattering of NO at the gas-liquid interface. Journal of Chemical Physics, 2017, 147, 054704.	1.2	10
47	Quantum state-resolved molecular scattering of NO ($2\hat{1}/2$) at the gas-[C <i>n</i> mim][Tf2N] room temperature ionic liquid interface: Dependence on alkyl chain length, collision energy, and temperature. AIP Advances, 2016, 6, .	0.6	13
48	High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2â€^ <i>a</i> 1 symmetry C–H stretching modes. Journal of Chemical Physics, 2016, 145, 044304.	1.2	7
49	Sub-Doppler infrared spectroscopy and formation dynamics of triacetylene in a slit supersonic expansion. Journal of Chemical Physics, 2016, 144, 074301.	1.2	6
50	Mechanistic Insights into Cofactor-Dependent Coupling of RNA Folding and mRNA Transcription/Translation by a Cobalamin Riboswitch. Cell Reports, 2016, 15, 1100-1110.	2.9	36
51	Quantum State Resolved 3D Velocity Map Imaging of Surface-Scattered Molecules: Incident Energy Effects in HCl + Self-Assembled Monolayer Collisions. Journal of Physical Chemistry C, 2016, 120, 16687-16698.	1.5	20
52	Amino Acid Specific Effects on RNA Tertiary Interactions: Single-Molecule Kinetic and Thermodynamic Studies. Journal of Physical Chemistry B, 2016, 120, 10615-10627.	1.2	26
53	Origin and control of blinking in quantum dots. Nature Nanotechnology, 2016, 11, 661-671.	15.6	396
54	Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer. Annual Review of Physical Chemistry, 2016, 67, 441-465.	4.8	24

#	Article	IF	Citations
55	Sub-Doppler infrared spectroscopy of propargyl radical (H2CCCH) in a slit supersonic expansion. Journal of Chemical Physics, 2015, 142, 244313.	1.2	3
56	High-resolution spectroscopy of jet-cooled CH5+: Progress. , 2015, , .		0
57	Single-Molecule FRET Reveals Three Conformations for the TLS Domain of Brome Mosaic Virus Genome. Biophysical Journal, 2015, 109, 2625-2636.	0.2	10
58	Kinetic and Thermodynamic Origins of Osmolyte-Influenced Nucleic Acid Folding. Journal of Physical Chemistry B, 2015, 119, 3687-3696.	1.2	31
59	Spectroscopy and Dynamics of Jet-Cooled Polyynes in a Slit Supersonic Discharge: Sub-Doppler Infrared Studies of Diacetylene HCCCCH. Journal of Physical Chemistry A, 2015, 119, 7940-7950.	1.1	9
60	Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature, 2015, 522, 368-372.	13.7	95
61	Nonadiabatic Spin–Orbit Excitation Dynamics in Quantum-State-Resolved NO(² Î _{1/2}) Scattering at the Gas–Room Temperature Ionic Liquid Interface. Journal of Physical Chemistry C, 2015, 119, 8596-8607.	1.5	15
62	Ultrafast Laser Studies of Two-Photon Excited Fluorescence Intermittency in Single CdSe/ZnS Quantum Dots. Nano Letters, 2015, 15, 7781-7787.	4.5	11
63	Pulsed IR Heating Studies of Single-Molecule DNA Duplex Dissociation Kinetics and Thermodynamics. Biophysical Journal, 2014, 106, 220-231.	0.2	22
64	Plasmon Mediated Multiphoton Photoemission Microscopy of Au Nanoholes and Nanohole Dimers. Journal of Physical Chemistry C, 2014, 118, 6959-6971.	1.5	7
65	Single-Molecule Fluorescence Resonance Energy Transfer Studies of the Human Telomerase RNA Pseudoknot: Temperature-/Urea-Dependent Folding Kinetics and Thermodynamics. Journal of Physical Chemistry B, 2014, 118, 3853-3863.	1.2	22
66	Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8464-8469.	3.3	139
67	Anomalously Strong Electric Near-Field Enhancements at Defect Sites on Au Nanoshells Observed by Ultrafast Scanning Photoemission Imaging Microscopy. Journal of Physical Chemistry C, 2013, 117, 22545-22559.	1.5	18
68	Coherent Multiphoton Photoelectron Emission from Single Au Nanorods: The Critical Role of Plasmonic Electric Near-Field Enhancement. ACS Nano, 2013, 7, 87-99.	7.3	38
69	Single-Molecule Kinetics Reveal Cation-Promoted DNA Duplex Formation Through Ordering of Single-Stranded Helices. Biophysical Journal, 2013, 105, 756-766.	0.2	93
70	Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances. Physical Chemistry Chemical Physics, 2013, 15, 10616.	1.3	11
71	Sub-Doppler Spectroscopy of the <i>trans</i> -HOCO Radical in the OH Stretching Mode. Journal of Physical Chemistry A, 2013, 117, 13255-13264.	1.1	16
72	An RNA folding motif: GNRA tetraloop–receptor interactions. Quarterly Reviews of Biophysics, 2013, 46, 223-264.	2.4	72

#	Article	lF	CITATIONS
73	Sub-Doppler infrared spectroscopy of CH2D radical in a slit supersonic jet: Isotopic symmetry breaking in the CH stretching manifold. Journal of Chemical Physics, 2012, 136, 234308.	1.2	7
74	Entropic origin of Mg ²⁺ -facilitated RNA folding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2902-2907.	3.3	53
75	On probing ions at the gas–liquid interface by quantum state-resolved molecular beam scattering: the curious incident of the cation in the night time. Faraday Discussions, 2012, 157, 297.	1.6	20
76	Single-Molecule Studies of the Lysine Riboswitch Reveal Effector-Dependent Conformational Dynamics of the Aptamer Domain. Biochemistry, 2012, 51, 9223-9233.	1.2	45
77	Inelastic Scattering of Radicals at the Gas–Ionic Liquid Interface: Probing Surface Dynamics of BMIM–Cl, BMIM–BF ₄ , and BMIM–Tf ₂ N by Rovibronic Scattering of NO [² 1csub>1/2(0.5)]. Journal of Physical Chemistry C, 2012, 116, 14284-14294.	1.5	18
78	Toward State-to-State Dynamics in Ultracold Collisions: Lessons from High-Resolution Spectroscopy of Weakly Bound Molecular Complexes. Chemical Reviews, 2012, 112, 5062-5072.	23.0	30
79	The Role of Counterion Valence and Size in GAAA Tetraloop–Receptor Docking/Undocking Kinetics. Journal of Molecular Biology, 2012, 423, 198-216.	2.0	23
80	Plasmonic Near-Electric Field Enhancement Effects in Ultrafast Photoelectron Emission: Correlated Spatial and Laser Polarization Microscopy Studies of Individual Ag Nanocubes. Nano Letters, 2012, 12, 4823-4829.	4.5	68
81	Thermodynamic Origins of Monovalent Facilitated RNA Folding. Biochemistry, 2012, 51, 3732-3743.	1.2	34
82	Multiphoton Scanning Photoionization Imaging Microscopy for Single-Particle Studies of Plasmonic Metal Nanostructures. Journal of Physical Chemistry C, 2011, 115, 83-91.	1.5	25
83	Kinetic Studies of the Photogeneration of Silver Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 9861-9870.	1.5	11
84	Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and Applied Chemistry, 2011, 83, 1637-1641.	0.9	1,449
85	Defining the hydrogen bond: An account (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83, 1619-1636.	0.9	856
86	State-to-state dynamics at the gas-liquid metal interface: Rotationally and electronically inelastic scattering of NO[2î1/2(0.5)] from molten gallium. Journal of Chemical Physics, 2011, 134, 234703.	1.2	16
87	State-Resolved Scattering at Room-Temperature Ionic Liquidâ 'Vacuum Interfaces: Anion Dependence and the Role of Dynamic versus Equilibrium Effects. Journal of Physical Chemistry Letters, 2010, 1, 674-678.	2.1	37
88	Real-Time Infrared Overtone Laser Control of Temperature in Picoliter H ₂ O Samples: "Nanobathtubs―for Single Molecule Microscopy. Journal of Physical Chemistry Letters, 2010, 1, 2264-2268.	2.1	19
89	Stereodynamics at the Gasâ^'Liquid Interface: Orientation and Alignment of CO ₂ Scattered from Perfluorinated Liquid Surfaces. Journal of Physical Chemistry A, 2010, 114, 1398-1410.	1.1	19
90	High resolution Dopplerimetry of correlated angular and quantum state-resolved CO2 scattering dynamics at the gas–liquid interface. Physical Chemistry Chemical Physics, 2010, 12, 14294.	1.3	14

#	Article	IF	Citations
91	Enthalpy-Driven RNA Folding: Single-Molecule Thermodynamics of Tetraloopâ^'Receptor Tertiary Interaction. Biochemistry, 2009, 48, 2550-2558.	1.2	48
92	Single molecule studies of quantum dot fluorescence intermittency: evidence for both dark and light-assisted blinking dynamics. Molecular Physics, 2009, 107, 1867-1878.	0.8	10
93	Dynamics of CO ₂ Scattering off a Perfluorinated Self-Assembled Monolayer. Influence of the Incident Collision Energy, Mass Effects, and Use of Different Surface Models. Journal of Physical Chemistry A, 2009, 113, 3850-3865.	1.1	45
94	Toward Three-Dimensional Quantum State-Resolved Collision Dynamics at the Gasâ^'Liquid Interface: Theoretical Investigation of Incident Angle. Journal of Physical Chemistry A, 2009, 113, 4613-4625.	1.1	27
95	Monovalent and Divalent Promoted GAAA Tetraloop-Receptor Tertiary Interactions from Freely Diffusing Single-Molecule Studies. Biophysical Journal, 2008, 95, 3892-3905.	0.2	36
96	Ab initio large-amplitude quantum-tunneling dynamics in vinyl radical: a vibrationally adiabatic approach. Physical Chemistry Chemical Physics, 2008, 10, 2113.	1.3	20
97	Correlated Angular and Quantum State-Resolved CO ₂ Scattering Dynamics at the Gasâ^Liquid Interface. Journal of Physical Chemistry A, 2008, 112, 9324-9335.	1.1	26
98	Quantum State-Resolved CO ₂ Collisions at the Gasâ^Liquid Interface:  Surface Temperature-Dependent Scattering Dynamics. Journal of Physical Chemistry B, 2008, 112, 507-519.	1.2	43
99	Stereodynamics in state-resolved scattering at the gas–liquid interface. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12684-12689.	3.3	50
100	Quantum-state resolved reactive scattering at the gas-liquid interface: F+squalaneâ€^(C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J). Journal of Chemical Physics, 2008, 129, 194705.	1.2	27
101	Molecular Spectroscopy at Low Temperatures: A High Resolution Infrared Retrospective. , 2008, , 231-294.		2
102	Spectroscopy in slit supersonic jet discharges: fine and hyperfine structure calculations for asymmetric top radicals with multiple nuclear spins. Molecular Physics, 2007, 105, 467-475.	0.8	6
103	Quantum-State-Resolved CO2Scattering Dynamics at the Gasâ^'Liquid Interface:Â Dependence on Incident Angleâ€. Journal of Physical Chemistry A, 2007, 111, 7420-7430.	1.1	41
104	Quantum-State-Resolved CO2 Scattering Dynamics at the Gasâ ⁻ 'Liquid Interface:  Incident Collision Energy and Liquid Dependence. Journal of Physical Chemistry B, 2006, 110, 17126-17137.	1.2	63
105	Metal Ion Dependence, Thermodynamics, and Kinetics for Intramolecular Docking of a GAAA Tetraloop and Receptor Connected by a Flexible Linker. Biochemistry, 2006, 45, 3664-3673.	1.2	50
106	Slit Discharge IR Spectroscopy of a Jet-Cooled Cyclopropyl Radical:  Structure and Intramolecular Tunneling Dynamics. Journal of Physical Chemistry A, 2006, 110, 3059-3070.	1.1	27
107	High-resolution infrared studies in slit supersonic discharges: CH2 stretch excitation of jet-cooled CH2Cl radical. Journal of Chemical Physics, 2006, 125, 054303.	1.2	22
108	Jet-cooled infrared spectroscopy in slit supersonic discharges: Symmetric and antisymmetric CH2 stretching modes of fluoromethyl (CH2F) radical. Journal of Chemical Physics, 2006, 125, 054304.	1.2	12

#	Article	IF	CITATIONS
109	Jet cooled spectroscopy of H2DO+: Barrier heights and isotope-dependent tunneling dynamics from H3O+ to D3O+. Journal of Chemical Physics, 2006, 125, 144311.	1.2	31
110	Imaging nanostructures with scanning photoionization microscopy. Journal of Chemical Physics, 2006, 125, 154709.	1.2	20
111	Supersonically cooled hydronium ions in a slit-jet discharge: High-resolution infrared spectroscopy and tunneling dynamics of HD2O+. Journal of Chemical Physics, 2005, 122, 224301.	1.2	26
112	Docking kinetics and equilibrium of a GAAA tetraloop-receptor motif probed by single-molecule FRET. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10505-10510.	3.3	92
113	Direct evidence for nonadiabatic dynamics in atom+polyatom reactions: Crossed-jet laser studies of F+D2Oâ†'DF+OD. Journal of Chemical Physics, 2005, 123, 224307.	1.2	39
114	Quantum State-Resolved Energy Transfer Dynamics at Gasâ^'Liquid Interfaces:  IR Laser Studies of CO2 Scattering from Perfluorinated Liquids. Journal of Physical Chemistry B, 2005, 109, 16396-16405.	1.2	70
115	Vibrationally mediated dissociation dynamics of H2O in the vOH=2 polyad. Journal of Chemical Physics, 2003, 119, 10158-10168.	1.2	15
116	Probing hydrogen bond potential surfaces for out-of-plane geometries: Near-infrared combination band torsional ($\hat{l}\frac{1}{2}$ 6) spectroscopy in (HCl)2. Journal of Chemical Physics, 2003, 118, 10137-10148.	1.2	9
117	Probing potential surfaces for hydrogen bonding: Near-infrared combination band spectroscopy of van der Waals stretch (\hat{l} /24) and geared bend (\hat{l} /25) vibrations in (HCl)2. Journal of Chemical Physics, 2002, 116, 6132-6145.	1.2	13
118	Beyond the Born–Oppenheimer approximation: High-resolution overtone spectroscopy of H2D+ and D2H+. Journal of Chemical Physics, 2002, 116, 6146-6158.	1.2	31
119	Intramolecular energy flow and nonadiabaticity in vibrationally mediated chemistry: Wave packet studies of Cl+H2O. Journal of Chemical Physics, 2002, 116, 1406-1416.	1.2	44
120	Reactive scattering of F+HD→HF(v,J)+D:â€,HF(v,J) nascent product state distributions and evidence for quantum transition state resonances. Journal of Chemical Physics, 2002, 116, 5622-5632.	1.2	49
121	"Onâ€∮"off―fluorescence intermittency of single semiconductor quantum dots. Journal of Chemical Physics, 2001, 115, 1028-1040.	1.2	504
122	High-resolution IR studies of hydrogen bonded clusters: Large amplitude dynamics in (HCl)n. Faraday Discussions, 2001, 118, 63-78.	1.6	27
123	Concentration modulation spectroscopy with a pulsed slit supersonic discharge expansion source. Chemical Physics Letters, 2001, 344, 23-30.	1.2	59
124	Reactivity of vibrationally excited methane on nickel surfaces. Journal of Chemical Physics, 2001, 115, 5611-5619.	1.2	77
125	Laser spectroscopy of jet-cooled ethyl radical: Infrared studies in the CH2 stretch manifold. Journal of Chemical Physics, 2000, 112, 1823-1834.	1.2	36
126	Quantum state-resolved reactive scattering of F+CH4â†'HF(v,J)+CH3: Nascent HF(v,J) product state distributions. Journal of Chemical Physics, 2000, 113, 3670-3680.	1.2	73

#	Article	IF	Citations
127	Bond-breaking in quantum state selected clusters: Inelastic and nonadiabatic intracluster collision dynamics in Ar–H2O→Ar+H(2S)+OH(2Î1/2,3/2±;N). Journal of Chemical Physics, 2000, 112, 7449-7460.	1.2	23
128	Cluster photofragmentation dynamics: Quasiclassical trajectory studies of Arn–H2S and Arn–SH (n=1,2). Journal of Chemical Physics, 2000, 113, 10962-10972.	1.2	9
129	Nonexponential "blinking―kinetics of single CdSe quantum dots: A universal power law behavior. Journal of Chemical Physics, 2000, 112, 3117-3120.	1.2	669
130	Vibrationally mediated photolysis dynamics of H2O in the vOH=3 manifold: Far off resonance photodissociation cross sections and OH product state distributions. Journal of Chemical Physics, 1999, 110, 8564-8576.	1.2	19
131	Dynamics of collisional alignment in supersonic expansions: Trajectory studies of He+CO, O2, and CO2. Journal of Chemical Physics, 1999, 111, 6821-6833.	1.2	22
132	High-resolution diode laser study of H2–H2O van der Waals complexes: H2O as proton acceptor and the role of large amplitude motion. Journal of Chemical Physics, 1999, 110, 156-167.	1.2	54
133	Rotationally inelastic scattering of jet cooled H2O with Ar: State-to-state cross sections and rotational alignment effects. Journal of Chemical Physics, 1999, 110, 8543-8554.	1.2	32
134	Energy-dependent cross sections and nonadiabatic reaction dynamics in F(2P3/2,2P1/2)+n–H2→HF(v,J)+H. Journal of Chemical Physics, 1999, 111, 8404-8416.	1.2	62
135	High-resolution infrared spectroscopy of jet-cooled allyl radical (CH2–CH–CH2): In-phase (ν1) and out-of-phase (ν13) antisymmetric CH2 stretching vibrations. Journal of Chemical Physics, 1998, 109, 7793-7802.	1.2	34
136	Quantum state-resolved reactive scattering of F+H2 in supersonic jets: Nascent HF(v,J) rovibrational distributions via IR laser direct absorption methods. Journal of Chemical Physics, 1998, 109, 9306-9317.	1,2	55
137	Bond-selective photofragmentation of jet-cooled HOD at 193 nm: Vibrationally mediated photochemistry with zero-point excitation. Journal of Chemical Physics, 1998, 109, 6631-6640.	1.2	36
138	OH stretch overtone spectroscopy and transition dipole alignment of HOD. Journal of Chemical Physics, 1998, 108, 72-80.	1,2	39
139	High resolution mid-infrared spectroscopy of ArH2O: The v2 bend region of H2O. Journal of Chemical Physics, 1997, 106, 3078-3089.	1,2	49
140	High resolution vibrational overtone studies of HOD and H2O with single mode, injection seeded ring optical parametric oscillators. Journal of Chemical Physics, 1997, 107, 8854-8865.	1.2	34
141	State-to-state reactive scattering of F+H2 in supersonic jets: Nascent rovibrational HF(v,J) distributions via direct IR laser absorption. Journal of Chemical Physics, 1997, 107, 8193-8196.	1.2	47
142	Sequential solvation of HCl in argon: High resolution infrared spectroscopy of ArnHCl (n=1,2,3). Journal of Chemical Physics, 1997, 107, 1115-1127.	1.2	46
143	Jet-cooled molecular radicals in slit supersonic discharges: Sub-Doppler infrared studies of methyl radical. Journal of Chemical Physics, 1997, 107, 5661-5675.	1.2	103
144	Scattering dynamics in HF+He, Ne, and Ar: State-to-state cross sections, Dopplerimetry, and alignment measurement via direct infrared laser absorption in crossed supersonic jets. Journal of Chemical Physics, 1997, 106, 2248-2264.	1.2	35

#	Article	IF	Citations
145	Photodissociation dynamics of jet-cooled H2O and D2O in the non-Franck–Condon regime: Relative absorption cross sections and product state distributions at 193 nm. Journal of Chemical Physics, 1997, 107, 6123-6135.	1.2	34
146	Rotationally inelastic scattering in CH4+He, Ne, and Ar: Stateâ€toâ€state cross sections via direct infrared laser absorption in crossed supersonic jets. Journal of Chemical Physics, 1996, 105, 3497-3516.	1.2	43
147			

#	Article	IF	CITATIONS
163	Stabilization and precise calibration of a continuousâ€wave difference frequency spectrometer by use of a simple transfer cavity. Review of Scientific Instruments, 1994, 65, 42-48.	0.6	94
164	Photodissociation dynamics in quantum stateâ€selected clusters: A test of the oneâ€atom cage effect in Ar–H2O. Journal of Chemical Physics, 1994, 101, 6356-6358.	1.2	54
165	Large amplitude skeletal isomerization as a promoter of intramolecular vibrational relaxation in CH stretch excited hydrocarbons. Journal of Chemical Physics, 1994, 101, 3421-3435.	1.2	49
166	Pressure broadening and collisional narrowing in OH($v=1\hat{a}\dagger0$) rovibrational transitions with Ar, He, O2, and N2. Journal of Chemical Physics, 1994, 100, 2677-2689.	1.2	26
167	High resolution near infrared spectroscopy of HCl–DCl and DCl–HCl: Relative binding energies, isomer interconversion rates, and mode specific vibrational predissociation. Journal of Chemical Physics, 1994, 100, 7250-7267.	1.2	38
168	Quantum yields for OH production from 193 and 248 nm photolysis of HNO3 and H2O2. Journal of Chemical Physics, 1993, 98, 6935-6946.	1.2	72
169	High resolution, jetâ€cooled infrared spectroscopy of (HCl)2: Analysis of î½1and î½2HCl stretching fundamentals, interconversion tunneling, and modeâ€specific predissociation lifetimes. Journal of Chemical Physics, 1993, 99, 4346-4362.	1.2	92
170	Slitâ€jet nearâ€infrared diode laser spectroscopy of (DCl)2: ν1, ν2DCl stretching fundamentals, tunneling dynamics, and the influence of large amplitude â€~â€~geared'' intermolecular rotation. Journal of Chemical Physics, 1993, 99, 5045-5060.	l 1.2	37
171	Rigid bender analysis of van der Waals complexes: The intermolecular bending potential of a hydrogen bond. Journal of Chemical Physics, 1992, 96, 5712-5725.	1.2	22
172	Intermolecular HF motion in ArnHF micromatrices (n=1,2,3,4): Classical and quantum calculations on a pairwise additive potential surface. Journal of Chemical Physics, 1992, 97, 6044-6056.	1.2	31
173	A spectroscopic puzzle in ArHF solved: The test of a new potential. Journal of Chemical Physics, 1992, 97, 8009-8018.	1.2	47
174	Highâ€resolution infrared overtone spectroscopy of ArHF via Nd:YAG/dye laser difference frequency generation. Journal of Chemical Physics, 1992, 97, 7967-7978.	1.2	33
175	Vibration, rotation, and parity specific predissociation dynamics in asymmetric OH stretch excited ArH2O: A half collision study of resonant V–V energy transfer in a weakly bound complex. Journal of Chemical Physics, 1992, 97, 8096-8110.	1.2	65
176	Slitâ€jet nearâ€infrared spectroscopy and internal rotor dynamics of the ArH2O van der Waals complex: An angular potentialâ€energy surface for internal H2O rotation. Journal of Chemical Physics, 1991, 95, 7917-7932.	1.2	73
177	Investigation of internal rotor dynamics of NeDCl and ArDCl via infrared absorption spectroscopy. Journal of Chemical Physics, 1991, 94, 5796-5811.	1.2	29
178	Rotational predissociation, vibrational mixing, and van der Waals intermolecular potentials of NeDF. Journal of Chemical Physics, 1991, 94, 208-223.	1.2	28
179	Mode specific internal and direct rotational predissociation in HeHF, HeDF, and HeHCl: van der Waals complexes in the weak binding limit. Journal of Chemical Physics, 1990, 93, 5387-5407.	1.2	92
180	A study of the structure and dynamics of the hydronium ion by high resolution infrared laser spectroscopy. III. The $\hat{l}\frac{1}{2}$ 3 band of D3O+. Journal of Chemical Physics, 1990, 92, 3257-3260.	1.2	21

#	Article	IF	Citations
181	Multiple intermolecular bend vibrational excitation of a hydrogen bond: An extended infrared study of OCOHF. Journal of Chemical Physics, 1990, 93, 7716-7730.	1.2	39
182	Vibrational mode mixing in terminal acetylenes: Highâ€resolution infrared laser study of isolated J states. Journal of Chemical Physics, 1990, 92, 2229-2243.	1.2	126
183	The infrared spectra of nitrous oxide–HF isomers. Journal of Chemical Physics, 1989, 90, 4671-4680.	1.2	74
184	Highâ€resolution, slit jet infrared spectroscopy of hydrocarbons: Quantum state specific mode mixing in CH stretchâ€excited propyne. Journal of Chemical Physics, 1989, 91, 104-113.	1.2	98
185	The dipole moment function and vibrational transition intensities of OH. Journal of Chemical Physics, 1989, 90, 5455-5465.	1.2	48
186	Weakly bound NeHF. Journal of Chemical Physics, 1989, 91, 711-721.	1.2	47
187	Slit jet infrared spectroscopy of NeHF complexes: Internal rotor andJâ€dependent predissociation dynamics. Journal of Chemical Physics, 1989, 91, 722-731.	1.2	70
188	Calculation of vibration–rotation spectra for rare gas–HCl complexes. Journal of Chemical Physics, 1989, 90, 7000-7013.	1.2	66
189	Symmetry breaking in HCl and DCl dimers: A direct nearâ€infrared measurement of interconversion tunneling rates. Journal of Chemical Physics, 1989, 91, 4418-4419.	1.2	50
190	Intramolecular dynamics of van der Waals molecules: An extended infrared study of ArHF. Journal of Chemical Physics, 1989, 91, 2790-2807.	1.2	88
191	The infrared spectrum of D2HF. Journal of Chemical Physics, 1988, 89, 7180-7188.	1.2	71
192	Visible absorption and magneticâ€rotation spectroscopy of 1CH2: Analysis of the 1A1 state and the 1A1–3B1 coupling. Journal of Chemical Physics, 1987, 86, 1189-1205.	1.2	95
193	High sensitivity, highâ€resolution IR laser spectroscopy in slit supersonic jets: Application to N2HF ν1and ν5+ν1â^²Î½5. Journal of Chemical Physics, 1987, 86, 3151-3165.	1.2	114
194	Direct IR laser absorption spectroscopy of jetâ€cooled CO2HF complexes: Analysis of the ν1HF stretch and a surprisingly low frequency ν6intermolecular CO2bend. Journal of Chemical Physics, 1987, 86, 5337-5349.	1.2	77
195	The nearâ€infrared spectrum of ONNHFâ€"direct evidence for geometric isomerism in a hydrogen bonded complex. Journal of Chemical Physics, 1987, 87, 1450-1451.	1.2	75
196	Visible absorption and magneticâ€rotation spectroscopy of 1CH2: The analysis of the bl̂ 1B1 state. Journal of Chemical Physics, 1987, 86, 1172-1188.	1.2	113
197	Hindered internal rotation in jet cooled H2HF complexes. Journal of Chemical Physics, 1987, 87, 5621-5628.	1.2	111
198	Slit pulsed valve for generation of longâ€pathâ€length supersonic expansions. Review of Scientific Instruments, 1987, 58, 807-811.	0.6	113

#	Article	IF	CITATIONS
199	Probability oscillations in single pass curve crossings: Semiclassical predictions of nonmonotonic dependence on crossing velocity. Journal of Chemical Physics, 1986, 84, 1554-1564.	1.2	6
200	High resolution IR laser spectroscopy of van der Waals complexes in slit supersonic jets: Observation and analysis of $\hat{l}/21$, $\hat{l}/21+\hat{l}/22$, and $\hat{l}/21+2\hat{l}/23$ in ArHF. Journal of Chemical Physics, 1986, 85, 4890-4902.	1.2	103
201	Photofragmentation dynamics of ketene at 308 nm: Initial vibrational and rotational state distributions of CO product by vacuum UV laserâ€induced fluorescence. Journal of Chemical Physics, 1985, 83, 223-229.	1.2	71
202	A study of the ν1 fundamental and bendâ€excited hot band of DNN+ by velocity modulation absorption spectroscopy with an infrared difference frequency laser. Journal of Chemical Physics, 1984, 81, 5281-5287.	1.2	47
203	Slow vibrational relaxation in picosecond iodine recombination in liquids. Journal of Chemical Physics, 1982, 77, 2130-2143.	1,2	154
204	Vibrational energy transfer from highly excited anharmonic oscillators. Dependence on quantum state and interaction potential. Journal of Chemical Physics, 1982, 76, 6002-6014.	1,2	85
205	Laser initiated chain reactions: A generalized extension to complex chemical chain systems. Journal of Chemical Physics, 1981, 75, 4949-4959.	1,2	29
206	Laserâ€initiated chemical chain reactions. Journal of Chemical Physics, 1980, 72, 1722-1732.	1.2	38
207	$Br^*(2P1/2)+H2(v=0,1)$: Laser studies of the competition between reactive pathways and inelastic energy transfer channels. Journal of Chemical Physics, 1980, 73, 6182-6190.	1.2	36
208	High Resolution Infrared Spectroscopy of Highly Reactive Chemical Intermediates: Berkeley Inspiration and a C.B. Moore Retrospective. ACS Symposium Series, 0, , 307-332.	0.5	0