List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1745961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room-temperature thermoelectric materials: Challenges and a new paradigm. Journal of Materiomics, 2022, 8, 427-436.	5.7	34
2	Module-level design and characterization of thermoelectric power generator. Chinese Physics B, 2022, 31, 048502.	1.4	1
3	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2022, 134, .	2.0	9
4	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, e202111826.	13.8	21
5	Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting. Nano Energy, 2022, 92, 106738.	16.0	30
6	A general design strategy for thermoelectric interface materials in n-type Mg3Sb1.5Bi0.5 single leg used in TEGs. Acta Materialia, 2022, 226, 117616.	7.9	31
7	Compositional engineering of metal-xanthate precursors toward (Bi _{1â[~] <i>x</i>} Sb _{<i>x</i>}) ₂ S ₃ (0 ≤i>x ≤0.05) films with enhanced room temperature thermoelectric performance. Journal of Materials Chemistry C, 2022, 10, 1718-1726.	5.5 ⁵	6
8	Epitaxial growth and thermoelectric properties of Mg3Bi2 thin films deposited by magnetron sputtering. Applied Physics Letters, 2022, 120, .	3.3	13
9	3D Hierarchical Electrodes Boosting Ultrahigh Power Output for Gelatinâ€KClâ€FeCN ^{4â^'/3â^'} Ionic Thermoelectric Cells. Advanced Energy Materials, 2022, 12, .	19.5	40
10	Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nature Communications, 2022, 13, 752.	12.8	49
11	Machine learning assisted discovering of new M2X3-type thermoelectric materials. Rare Metals, 2022, 41, 1543-1553.	7.1	12
12	High-performance, flexible thermoelectric generator based on bulk materials. Cell Reports Physical Science, 2022, 3, 100780.	5.6	24
13	Large Transverse and Longitudinal Magnetoâ€Thermoelectric Effect in Polycrystalline Nodalâ€Line Semimetal Mg ₃ Bi ₂ . Advanced Materials, 2022, 34, e2200931.	21.0	28
14	A general <scp>White–Box</scp> strategy for designing thermoelectric cooling system. InformaÄnÃ- Materiály, 2022, 4, .	17.3	6
15	Anion Size Effect of Ionic Liquids in Tuning the Thermoelectric and Mechanical Properties of PEDOT:PSS Films through a Counterion Exchange Strategy. ACS Applied Materials & Interfaces, 2022, 14, 27911-27921.	8.0	11
16	Solidâ€State Janus Nanoprecipitation Enables Amorphousâ€Like Heat Conduction in Crystalline Mg ₃ Sb ₂ â€Based Thermoelectric Materials. Advanced Science, 2022, 9, .	11.2	12
17	Bistructural Pseudocontinuous Solid Solution with Hierarchical Microstructures from Ab initio Study: Application to the Mg2Snâ^'Mg3Sb2 System. Acta Materialia, 2022, 236, 118139.	7.9	3
18	Thermodynamic criterions of the thermoelectric performance enhancement in Mg2Sn through the self-compensation vacancy. Materials Today Physics, 2021, 16, 100327.	6.0	22

#	Article	IF	CITATIONS
19	Ionic thermoelectric materials for near ambient temperature energy harvesting. Applied Physics Letters, 2021, 118, .	3.3	40
20	Enhanced Piezocatalytic Activity of Sr _{0.5} Ba _{0.5} Nb ₂ O ₆ Nanostructures by Engineering Surface Oxygen Vacancies and Self-Generated Heterojunctions. ACS Applied Materials & Interfaces, 2021, 13, 7259-7267.	8.0	45
21	Leafâ€Inspired Flexible Thermoelectric Generators with High Temperature Difference Utilization Ratio and Output Power in Ambient Air. Advanced Science, 2021, 8, 2004947.	11.2	55
22	Thermoelectric properties of p-type polycrystalline Bi0.8Sb0.8In0.4Se3. Applied Physics Letters, 2021, 118, .	3.3	5
23	Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics. Micromachines, 2021, 12, 869.	2.9	13
24	Wearable Thermoelectric Materials and Devices for Selfâ€Powered Electronic Systems. Advanced Materials, 2021, 33, e2102990.	21.0	221
25	Maximized atomic disordering approach boost the thermoelectric performance of Mg2Sn through the self-compensation effect and steric effect. Acta Materialia, 2021, 217, 117172.	7.9	11
26	Thermodynamic activity of solute in multicomponent alloy from first-principles: Excess Mg in Mg3(Sb1-Bi)2 as an example. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102318.	1.6	2
27	High thermoelectric properties achieved in environmentally friendly sulfide compound Bi2SeS2 by nanoenginnering. Nano Energy, 2021, 88, 106273.	16.0	21
28	Stable bismuth-antimony alloy cathode with a conversion-dissolution/deposition mechanism for high-performance zinc batteries. Materials Today, 2021, 51, 87-95.	14.2	10
29	Enhanced Thermoelectric Performance by Strong Phonon Scattering at the Heterogeneous Interfaces of the Mg ₂ Sn/Mg ₃ Sb ₂ High-Content Nanocomposite. ACS Applied Materials & Interfaces, 2021, 13, 56164-56170.	8.0	11
30	Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance. Nature Communications, 2021, 12, 7192.	12.8	22
31	Dynamic piezo-thermoelectric generator for simultaneously harvesting mechanical and thermal energies. Nano Energy, 2020, 69, 104397.	16.0	38
32	System efficiency and power: the bridge between the device and system of a thermoelectric power generator. Energy and Environmental Science, 2020, 13, 3514-3526.	30.8	30
33	Exclusive enhancement of catalytic activity in Bi _{0.5} Na _{0.5} TiO ₃ nanostructures: new insights into the design of efficient piezocatalysts and piezo-photocatalysts. Journal of Materials Chemistry A, 2020, 8, 16238-16245.	10.3	93
34	Enhanced thermoelectric performances of flexible PEDOT:PSS film by synergistically tuning the ordering structure and oxidation state. Journal of Materiomics, 2020, 6, 119-127.	5.7	21
35	Giant thermopower of ionic gelatin near room temperature. Science, 2020, 368, 1091-1098.	12.6	382
36	The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg _{3+ <i>î´</i>} Sb _{2- <i>y</i>} Bi <i> _y </i> near Room Temperature. Research, 2020, 2020, 1672051.	5.7	29

#	Article	IF	CITATIONS
37	Self-templated microwave-assisted hydrothermal synthesis of two-dimensional holey hydroxyapatite nanosheets for efficient heavy metal removal. Environmental Science and Pollution Research, 2019, 26, 30076-30086.	5.3	25
38	Enhanced Thermoelectric and Mechanical Properties in Yb _{0.3} Co ₄ Sb ₁₂ with In Situ Formed CoSi Nanoprecipitates. Advanced Energy Materials, 2019, 9, 1902435.	19.5	53
39	Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy, 2019, 66, 104083.	16.0	181
40	Thermoelectrics: Mg ₃₊ <i>_{l^}</i> Sb <i>_x</i> Bi _{2â^'} <i>_x</i> Family: A Promising Substitute for the Stateâ€ofâ€theâ€Art nâ€Type Thermoelectric Materials near Room Temperature (Adv. Funct. Mater. 4/2019). Advanced Functional Materials, 2019, 29, 1970020.	14.9	2
41	Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo-photocatalytic and ferro-photoelectrochemical effects. Nano Energy, 2019, 58, 695-705.	16.0	240
42	Luffa sponge-derived hierarchical meso/macroporous boron nitride fibers as superior sorbents for heavy metal sequestration. Journal of Hazardous Materials, 2019, 378, 120669.	12.4	26
43	Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) for High-Performance Zinc-Ion Batteries. ACS Nano, 2019, 13, 7270-7280.	14.6	81
44	Thermoelectric interface materials: A perspective to the challenge of thermoelectric power generation module. Journal of Materiomics, 2019, 5, 321-336.	5.7	113
45	Achieving band convergence by tuning the bonding ionicity in nâ€ŧype Mg ₃ Sb ₂ . Journal of Computational Chemistry, 2019, 40, 1693-1700.	3.3	68
46	The enhancement of thermoelectric performance of p-type Li doped Mg2Ge0.4Sn0.6 by Si addition. Scripta Materialia, 2019, 166, 122-127.	5.2	12
47	Synergistic enhancement of thermoelectric and mechanical performances of ionic liquid LiTFSI modulated PEDOT flexible films. Journal of Materials Chemistry C, 2019, 7, 4374-4381.	5.5	63
48	Synergetic tuning of electrical/thermal transport via dualâ€doping in Bi _{0.96â^'<i>x</i>} <scp>M</scp> g _{<i>x</i>} Pb _{0.06} CuSeO. Journal of the American Ceramic Society, 2019, 102, 1541-1547.	3.8	5
49	Mg ₃₊ <i>_δ</i> Sb <i>_x</i> Bi _{2â^`} <i>_x</i> Family: A Promising Substitute for the Stateâ€ofâ€theâ€Art nâ€Type Thermoelectric Materials near Room Temperature. Advanced Functional Materials, 2019, 29, 1807235.	14.9	98
50	Self-compensation induced vacancies for significant phonon scattering in InSb. Nano Energy, 2018, 48, 189-196.	16.0	30
51	High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. Journal of Materials Chemistry A, 2018, 6, 20128-20137.	10.3	22
52	The complexity of thermoelectric materials: why we need powerful and brilliant synchrotron radiation sources?. Materials Today Physics, 2018, 6, 68-82.	6.0	15
53	Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self ompensation and Mn Alloying. Small, 2018, 14, e1802615.	10.0	132
54	Anomalous CDW ground state in Cu2Se: A wave-like fluctuation of the dc I-V curve near 50ÂK. Journal of Materiomics, 2017, 3, 150-157.	5.7	5

#	Article	IF	CITATIONS
55	Low temperature thermoelectric properties of p-type copper selenide with Ni, Te and Zn dopants. Journal of Alloys and Compounds, 2017, 699, 718-721.	5.5	17
56	Comparative studies on thermoelectric properties of p-type Mg2Sn0.75Ge0.25 doped with lithium, sodium, and gallium. Acta Materialia, 2017, 141, 154-162.	7.9	40
57	New trends, strategies and opportunities in thermoelectric materials: A perspective. Materials Today Physics, 2017, 1, 50-60.	6.0	319
58	The bridge between the materials and devices of thermoelectric power generators. Energy and Environmental Science, 2017, 10, 69-85.	30.8	143
59	The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25. Acta Materialia, 2017, 124, 528-535.	7.9	21
60	Contact for Bi2Te3-Based Thermoelectric Leg. , 2017, , 605-624.		2
61	Thermoelectric performance enhancement of Mg ₂ Sn based solid solutions by band convergence and phonon scattering via Pb and Si/Ge substitution for Sn. Physical Chemistry Chemical Physics, 2016, 18, 20726-20737.	2.8	30
62	Carrier distribution in multi-band materials and its effect on thermoelectric properties. Journal of Materiomics, 2016, 2, 203-211.	5.7	23
63	Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4â^'xCoxSb12. Acta Materialia, 2016, 117, 13-22.	7.9	26
64	Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nature Energy, 2016, 1, .	39.5	269
65	Engineering Thermal Conductivity for Balancing Between Reliability and Performance of Bulk Thermoelectric Generators. Advanced Functional Materials, 2016, 26, 3678-3686.	14.9	25
66	New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg ₂ Sn _{1â^'xâ^'y} Ge _x Sb _y . Energy and Environmental Science, 2016, 9, 530-539.	30.8	83
67	Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system. Acta Materialia, 2016, 103, 633-642.	7.9	104
68	Importance of high power factor in thermoelectric materials for power generation application: A perspective. Scripta Materialia, 2016, 111, 3-9.	5.2	169
69	Efficiency and output power of thermoelectric module by taking into account corrected Joule and Thomson heat. Journal of Applied Physics, 2015, 118, .	2.5	29
70	Studies on mechanical properties of thermoelectric materials by nanoindentation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2191-2195.	1.8	69
71	Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Materialia, 2015, 87, 357-376.	7.9	447
72	n-type thermoelectric material Mg ₂ Sn _{0.75} Ge _{0.25} for high power generation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3269-3274.	7.1	191

#	Article	IF	CITATIONS
73	Relationship between thermoelectric figure of merit and energy conversion efficiency. Proceedings of the United States of America, 2015, 112, 8205-8210.	7.1	415
74	Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. Nano Energy, 2015, 13, 554-562.	16.0	91
75	Topological effect of surface plasmon excitation in gapped isotropic topological insulator nanowires. Canadian Journal of Physics, 2015, 93, 591-598.	1.1	4
76	High thermoelectric power factor in Cu–Ni alloy originate from potential barrier scattering of twin boundaries. Nano Energy, 2015, 17, 279-289.	16.0	81
77	Effect of triple fillers in thermoelectric performance of p-type skutterudites. Journal of Alloys and Compounds, 2015, 623, 104-108.	5.5	26
78	Bi2S3 nanonetwork as precursor for improved thermoelectric performance. Nano Energy, 2014, 4, 113-122.	16.0	64
79	Impact of Tertiary Treatment Processes on the Effectiveness of Chloramination for Biological Growth Control in Recirculating Cooling Systems Using Treated Municipal Wastewater. Journal of Environmental Engineering, ASCE, 2014, 140, 04013003.	1.4	1
80	Anomalous transport and thermoelectric performances of CuAgSe compounds. Solid State Ionics, 2014, 261, 21-25.	2.7	60
81	Substitution of Antimony by Tin and Tellurium in n-Type Skutterudites CoSb2.8Sn x Te0.2â^'x. Jom, 2014, 66, 2282-2287.	1.9	7
82	High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. Energy and Environmental Science, 2013, 6, 1750.	30.8	68
83	Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. Physical Chemistry Chemical Physics, 2013, 15, 6809.	2.8	85
84	The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound. Nano Energy, 2013, 2, 1172-1178.	16.0	35
85	Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. Journal of Materials Chemistry A, 2013, 1, 13093.	10.3	133
86	Effect of Hf Concentration on Thermoelectric Properties of Nanostructured Nâ€Type Halfâ€Heusler Materials Hf _x Zr _{1–x} NiSn _{0.99} Sb _{0.01} . Advanced Energy Materials, 2013, 3, 1210-1214.	19.5	195
87	Thermoelectric Property Study of Nanostructured pâ€Type Halfâ€Heuslers (Hf, Zr,) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10	Tf 50 182 1
88	Studies on the Bi ₂ Te ₃ –Bi ₂ Se ₃ –Bi ₂ S ₃ system for mid-temperature thermoelectric energy conversion. Energy and Environmental Science, 2013, 6, 552-560.	30.8	250
89	High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13261-13266.	7.1	632
90	Effect of aluminum on the thermoelectric properties of nanostructured PbTe. Nanotechnology, 2013, 24, 345705.	2.6	44

#	Article	IF	CITATIONS
91	Nanostructured Thermoelectric Materials. Springer Series in Materials Science, 2013, , 255-285.	0.6	17
92	Transport properties of Ni, Co, Fe, Mn doped Cu0.01Bi2Te2.7Se0.3 for thermoelectric device applications. Journal of Applied Physics, 2012, 112, .	2.5	16
93	Disordered stoichiometric nanorods and ordered off-stoichiometric nanoparticles in n-type thermoelectric Bi2Te2.7Se0.3, Journal of Applied Physics, 2012, 112, 093518. Experimental determination of the Lorenz number in Cu <mni:math< td=""><td>2.5</td><td>5</td></mni:math<>	2.5	5
94	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>0.01</mml:mn></mml:mrow></mml:mrow </mml:msub> Bi <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:math /><mml:mn>2</mml:mn></mml:math </mml:msub>Te<mml:math< td=""><td>3.2</td><td>38</td></mml:math<></mml:math 	3.2	38
95	Thermal stability of thermoelectric materials viain situresistivity measurements. Review of Scientific Instruments, 2012, 83, 115114.	1.3	4
96	Recent advances in thermoelectric nanocomposites. Nano Energy, 2012, 1, 42-56.	16.0	624
97	Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides. Nano Energy, 2012, 1, 183-189.	16.0	57
98	Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy, 2012, 1, 472-478.	16.0	271
99	Study of the Thermoelectric Properties of Lead Selenide Doped with Boron, Gallium, Indium, or Thallium. Journal of the American Chemical Society, 2012, 134, 17731-17738.	13.7	105
100	Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy and Environmental Science, 2012, 5, 5246-5251.	30.8	372
101	Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1â ^{~*} xTixCoSb0.8Sn0.2. Energy and Environmental Science, 2012, 5, 7543.	30.8	244
102	Effect of Silicon and Sodium on Thermoelectric Properties of Thallium-Doped Lead Telluride-Based Materials. Nano Letters, 2012, 12, 2324-2330.	9.1	64
103	Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe _{1–<i>y</i>} Se _{<i>y</i>} . Journal of the American Chemical Society, 2012, 134, 10031-10038.	13.7	337
104	Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers. Nano Letters, 2011, 11, 556-560.	9.1	362
105	Thermoelectric energy conversion using nanostructured materials. , 2011, , .		2
106	Enhancement in Thermoelectric Figureâ€Ofâ€Merit of an Nâ€Type Halfâ€Heusler Compound by the Nanocomposite Approach. Advanced Energy Materials, 2011, 1, 643-647.	19.5	286
107	Thermoelectric Property Studies on Cuâ€Đoped nâ€ŧype Cu _x Bi ₂ Te _{2.7} Se _{0.3} Nanocomposites. Advanced Energy Materials, 2011, 1, 577-587.	19.5	535
108	Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys. Journal of Materials Research, 2011, 26, 912-916.	2.6	23

#	Article	IF	CITATIONS
109	Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi ₂ Te _{2.7} Se _{0.3} . Nano Letters, 2010, 10, 3373-3378.	9.1	608
110	High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2, 152-158.	7.9	816
111	Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2009, 467, 91-97.	5.5	115
112	Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound. Journal of Applied Physics, 2009, 105, .	2.5	120
113	Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Journal of Solid State Chemistry, 2008, 181, 3278-3282.	2.9	103
114	Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sciences, 2008, 10, 651-658.	3.2	232
115	Improvement of Thermoelectric Performance of CoSb _{3â[~]`<i>x</i>} Te _{<i>x</i>} Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb. Chemistry of Materials, 2008, 20, 7526-7531.	6.7	147
116	Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2008, 455, 259-264.	5.5	366
117	Enhanced thermoelectric property originating from additional carrier pocket in skutterudite compounds. Applied Physics Letters, 2008, 93, .	3.3	31
118	Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3compound. Journal Physics D: Applied Physics, 2007, 40, 6784-6790.	2.8	89
119	Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering. Journal of Applied Physics, 2007, 102, .	2.5	205
120	Thermoelectric property of fine-grained CoSb3skutterudite compound fabricated by mechanical alloying and spark plasma sintering. Journal Physics D: Applied Physics, 2007, 40, 566-572.	2.8	74
121	Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering. Physica B: Condensed Matter, 2007, 400, 11-15.	2.7	38
122	Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>328</mml:mn><mml:mo>â€"</mml:mo><mml:mn>958</mml:mn><mm width="0.3em" /><mml:mi mathvariant="normal">K</mml:mi></mm </mml:mrow></mml:math> temperature	ll:mæpace	88
123	range. Physical Review B, 2007, 75, . High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Applied Physics Letters, 2006, 88, 092104.	3.3	130